scholarly journals Post-Annealing Effect on Optical and Electronic Properties of Thermally Evaporated MoOX Thin Films as Hole-Selective Contacts for p-Si Solar Cells

Author(s):  
Yuanwei Jiang ◽  
Shuangying Cao ◽  
Linfeng Lu ◽  
Guanlin Du ◽  
Yinyue Lin ◽  
...  

Abstract Owing to its large work function, MoOX has been widely used for hole-selective contact in both thin film and crystalline silicon solar cells. In this work, thermally evaporated MoOX films are employed on the rear sides of p-type crystalline silicon (p-Si) solar cells, where the optical and electronic properties of the MoOX films as well as the corresponding device performances are investigated as a function of post-annealing treatment. The MoOX film annealed at 100oC shows the highest work function and proves the best hole selectivity based on the results of energy band simulation and contact resistivity measurements. The full rear p-Si/MoOX/Ag contacted solar cells demonstrate the best performance with an efficiency of 19.19%, which is the result of the combined influence of MoOX’s hole selectivity and passivation ability.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuanwei Jiang ◽  
Shuangying Cao ◽  
Linfeng Lu ◽  
Guanlin Du ◽  
Yinyue Lin ◽  
...  

AbstractOwing to its large work function, MoOX has been widely used for hole-selective contact in both thin film and crystalline silicon solar cells. In this work, thermally evaporated MoOX films are employed on the rear sides of p-type crystalline silicon (p-Si) solar cells, where the optical and electronic properties of the MoOX films as well as the corresponding device performances are investigated as a function of post-annealing treatment. The MoOX film annealed at 100 °C shows the highest work function and proves the best hole selectivity based on the results of energy band simulation and contact resistivity measurements. The full rear p-Si/MoOX/Ag-contacted solar cells demonstrate the best performance with an efficiency of 19.19%, which is the result of the combined influence of MoOX’s hole selectivity and passivation ability.


2018 ◽  
Vol 8 (11) ◽  
pp. 2131
Author(s):  
Jun-Kyu Lee ◽  
Jin-Seok Lee ◽  
Young-Soo Ahn ◽  
Gi-Hwan Kang

We present electrowinning of silver (Ag) from crystalline silicon (c-Si) solar cells using a solution of methanesulfonic acid (MSA) as the electrolyte. Ag dissolved effectively in MSA because of its high solubility in MSA; however, the electrochemical recovery of Ag from MSA solutions was found to be inefficient because of the low mobility of Ag ions in MSA, owing to its high viscosity. Therefore, we decreased the viscosity of MSA by adding deionized (DI) water, as a possible method for enhancing the mobility of Ag ions. The concentrations of added DI water were 0, 1.1, 5.0, 9.3, and 20.8 M, respectively. Further, we performed cyclic voltammetry for each solution to calculate the diffusion coefficient using the Randles–Sevcik equation, and analyzed the viscosity of MSA solutions depending on the concentration of added water using a rheometer. The morphologies of the electrochemically recovered Ag particles changed with variations in the amount of the added water, from branch-like structures to dendritic structures with a decreasing size. Moreover, the cathodic current efficiency increased considerably with increasing concentration of the added DI water. Finally, we recovered Ag with >99.9% (3N) purity from c-Si solar cells by electrowinning, as determined by glow discharge mass spectrometry.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 430 ◽  
Author(s):  
Cao Yu ◽  
Shengzhi Xu ◽  
Jianxi Yao ◽  
Shuwei Han

Crystalline silicon (c-Si) is the dominating photovoltaic technology today, with a global market share of about 90%. Therefore, it is crucial for further improving the performance of c-Si solar cells and reducing their cost. Since 2014, continuous breakthroughs have been achieved in the conversion efficiencies of c-Si solar cells, with a current record of 26.6%. The great efficiency boosts originate not only from the materials, including Si wafers, emitters, passivation layers, and other functional thin films, but also from novel device structures and an understanding of the physics of solar cells. Among these achievements, the carrier-selective passivation contacts are undoubtedly crucial. Current carrier-selective passivation contacts can be realized either by silicon-based thin films or by elemental and/or compound thin films with extreme work functions. The current research and development status, as well as the future trends of these passivation contact materials, structures, and corresponding high-efficiency c-Si solar cells will be summarized.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55499-55506 ◽  
Author(s):  
Hom N. Luitel ◽  
Shintaro Mizuno ◽  
Toshihiko Tani ◽  
Yasuhiko Takeda

The newly developed CaZrO3:Er3+,Ni2+ broadband-sensitive upconverter utilizes 1060–1600 nm solar irradiation and can surpass the limiting efficiency of c-Si solar cells.


2016 ◽  
Vol 847 ◽  
pp. 123-130 ◽  
Author(s):  
Ruo Bing Jiao ◽  
Tao Wu ◽  
Bo Ping Zhang ◽  
Liang Liang Li

The silver pastes containing Ag2O powder, Ag powder, α-terpineol, ethyl-cellulose and Pb-free glass were synthesized for crystalline silicon (c-Si) solar cells. It was found that α-terpineol assisted the decomposition of Ag2O powder and effectively lowered the decomposition temperature of Ag2O. Ag nanoparticles were produced during the decomposition of Ag2O, which helped to reduce the sintering temperature of the silver pastes. The Ag2O-aided silver pastes were fired on polycrystalline silicon solar cells at various temperatures, and large plate-shaped Ag crystallites appeared at the interfaces between the sintered pastes and the emitter, which ensured a good electrical contact. The contact resistivity of Ag2O-aided silver paste with an optimal ratio of Ag2O to Ag was lower than that of the paste with pure Ag powder. The lowest contact resistivity of Ag2O-aided Pb-free silver pastes sintered at 800°C was 0.029 Ω⋅cm2, which was close to that of commercial silver paste that contained Pb-based glass (0.026 Ω⋅cm2). The experimental data demonstrated that the addition of Ag2O reduced the contact resistance and promoted the sintering of Pb-free silver pastes, and Ag2O-aided Pb-free silver paste could be a promising candidate used for front-contact electrode of c-Si solar cells.


2009 ◽  
Vol 1210 ◽  
Author(s):  
Teng-Yu Wang ◽  
Terry Wang ◽  
Yen-Ju Chen ◽  
Chwung-Shan Kou ◽  
Chien-Hsun Chen ◽  
...  

AbstractWe applied the deactivation treatments to p-type single crystalline silicon solar cells for deactivating the recombination-active boron-oxygen complex. The methods we used include thermal annealing treatment, capacitively couple plasma (CCP) treatment, and plasma immersion ion implantation (PIII) treatment. The results showed that all the deactivation treatments were working and the energy transfer efficiency (Eff) was thereby increased by more than 1% absolute compared to the degraded state base on the increasing of the open-circular voltage (Voc) and short-current density (Jsc). The CCP deactivated treatment got better efficiencies than PIII treatment because the PIII treatment damaged the surface of solar cells. After the forming gas treatment, the samples could be improved to close to the PIII samples due to the surface damage repairing. However, the increased efficiency could not be kept and would be degraded again after illumination.


RSC Advances ◽  
2014 ◽  
Vol 4 (66) ◽  
pp. 34823-34829 ◽  
Author(s):  
Jongsung Park ◽  
Nochang Park

Chemical wafer recovering processes fabricate virgin-like c-Si wafers from degraded c-Si solar cells.


2017 ◽  
Vol 53 (46) ◽  
pp. 6239-6242 ◽  
Author(s):  
Sheng Yuan ◽  
Yongji Chen ◽  
Zongwei Mei ◽  
Ming-Jian Zhang ◽  
Zhou Gao ◽  
...  

Novel Ag-doped glass frits remarkably improved the interface between bulk Ag and n-Si, which greatly reduced the contact resistance of c-Si solar cells.


Nanoscale ◽  
2014 ◽  
Vol 6 (16) ◽  
pp. 9568-9573 ◽  
Author(s):  
Yunae Cho ◽  
Minji Gwon ◽  
Hyeong-Ho Park ◽  
Joondong Kim ◽  
Dong-Wook Kim

A high photocurrent of 36.96 mA cm−2was achieved for wafer-scaled crystalline Si solar cells with hexagonal nanoconical frustum arrays at the surface. Optical simulations showed that the expected photocurrent of 10 μm thick nanostructured cells could slightly exceed the Lambertian limit.


Sign in / Sign up

Export Citation Format

Share Document