scholarly journals Rubidium chloride modulated the fecal microbiota community in mice

2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background: The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes.Results: The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level.Conclusions: Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level. Conclusions Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention.


2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background: The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study for depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated of their characteristics and bacterial microbiome changes.Results: The 16S ribosomal RNA gene sequencing of feces showed RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure for the first time. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio. While, RbCl significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. Besides, with regarding to the composition of archaea, RbCl significantly enhanced the abundances of Crenarchaeota, Thermoprotei, Sulfolobales, Sulfolobaceae and Sulfolobus lineages. Conclusions: These results revealed that enrichments of Clostridium XlVa and Alistipes could affect the levels of serotonin, a critical signaling molecule of brain-gut-microbiota axis. Therefore, anticancer and anti-depressant effects of RbCl might be partly mediated by modifying brain-gut-microbiota axis.


2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background The intestinal microbiota plays an important role in host health. Although rubidium (Rb) has been used to study for depression and cancers, the interaction between intestinal microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and intestinal microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated of their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of feces showed RbCl generally maintained the microbial community diversity, while the shifts in gut microbial composition were apparent after RbCl exposure for the first time. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio. While, RbCl significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. Besides, with regarding to the composition of archaea, RbCl significantly enhanced the abundances of Crenarchaeota, Thermoprotei, Sulfolobales, Sulfolobaceae and Sulfolobus lineages. Conclusions These results revealed that enrichments of Clostridium XlVa, Alistipes and sulfate-reducing bacteria could act on brain-gut-microbiota axis by affecting serotonergic system and immune system. Therefore, it was likely that RbCl would have beneficial anti-effects on depression and cancers by modifying brain-gut-microbiota axis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shogo Kitahata ◽  
Yasunori Yamamoto ◽  
Osamu Yoshida ◽  
Yoshio Tokumoto ◽  
Tomoe Kawamura ◽  
...  

AbstractThe small intestinal mucosa-associated microbiota (MAM) can potentially impact the etiology of primary biliary cholangitis (PBC). Herein, we investigate the MAM profile to determine its association with liver pathology in patients with PBC. Thirty-four patients with PBC and 21 healthy controls who underwent colonoscopy at our hospital were enrolled in our study. We performed 16S ribosomal RNA gene sequencing of MAM samples obtained from the mucosa of the terminal ileum and examined the relationship between the abundance of ileal MAM and chronic nonsuppurative destructive cholangitis using liver specimens from patients with PBC. There was a significant reduction in microbial diversity within individuals with PBC (P = 0.039). Dysbiosis of ileal MAM was observed in patients with PBC, with a characteristic overgrowth of Sphingomonadaceae and Pseudomonas. Multivariate analysis showed that the overgrowth of Sphingomonadaceae and Pseudomonas is an independent association factor for PBC (P = 0.0429, P = 0.026). Moreover, the abundance of Sphingomonadaceae was associated with chronic nonsuppurative destructive cholangitis in PBC (P = 0.00981). The overgrowth of Sphingomonadaceae and Pseudomonas in ileal MAM was found in patients with PBC. Sphingomonadaceae may be associated with the pathological development of PBC.


2001 ◽  
Vol 67 (1) ◽  
pp. 51-58 ◽  
Author(s):  
J. M. Benoit ◽  
C. C. Gilmour ◽  
R. P. Mason

ABSTRACT We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRBDesulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255633
Author(s):  
Yugal R. Bindari ◽  
Robert J. Moore ◽  
Thi Thu Hao Van ◽  
Matthew Hilliar ◽  
Shu-Biao Wu ◽  
...  

Traditional sampling methods for the study of poultry gut microbiota preclude longitudinal studies as they require euthanasia of birds for the collection of caecal and ileal contents. Some recent research has investigated alternative sampling methods to overcome this issue. The main goal of this study was to assess to what extent the microbial composition of non-invasive samples (excreta, litter and poultry dust) are representative of invasive samples (caecal and ileal contents). The microbiota of excreta, dust, litter, caecal and ileal contents (n = 110) was assessed using 16S ribosomal RNA gene amplicon sequencing. Of the operational taxonomic units (OTUs) detected in caecal contents, 99.7% were also detected in dust, 98.6% in litter and 100% in excreta. Of the OTUs detected in ileal contents, 99.8% were detected in dust, 99.3% in litter and 95.3% in excreta. Although the majority of the OTUs found in invasive samples were detected in non-invasive samples, the relative abundance of members of the microbial communities of these groups were different, as shown by beta diversity measures. Under the conditions of this study, correlation analysis showed that dust could be used as a proxy for ileal and caecal contents to detect the abundance of the phylum Firmicutes, and excreta as a proxy of caecal contents for the detection of Tenericutes. Similarly, litter could be used as a proxy for caecal contents to detect the abundance of Firmicutes and Tenericutes. However, none of the non-invasive samples could be used to infer the overall abundance of OTUs observed in invasive samples. In conclusion, non-invasive samples could be used to detect the presence and absence of the majority of the OTUs found in invasive samples, but could not accurately reflect the microbial community structure of invasive samples.


2016 ◽  
Vol 66 (2) ◽  
pp. 227-256 ◽  
Author(s):  
Christopher V. Jeans ◽  
Alexandra V. Turchyn ◽  
Xu-Fang Hu

AbstractThe relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from −48.6‰ at their core to −32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from −34.7‰ to +40.0‰. In the lower part of the section δ34S vary from −34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from −32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12033
Author(s):  
Yi-ran Chen ◽  
Qin-long Jing ◽  
Fang-lan Chen ◽  
Huimin Zheng ◽  
Li-dan Chen ◽  
...  

Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge is available regarding the relationship between DSV and host health. In this study, we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to study the ecology of DSV and the associations of DSV and host health parameters. Phylogenetic analysis showed that Desulfovibrio piger might be the most common and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were positively associated with bacterial community diversity. The relative abundance of DSV was positively correlated with beneficial genera, including Oscillospira, Coprococcus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella, and Ralstonia. Moreover, the relative abundance of DSV was negatively correlated with body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that DSV is associated with healthy hosts in some human populations.


Sign in / Sign up

Export Citation Format

Share Document