scholarly journals Rubidium chloride modulated the fecal microbiota community in mice

2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background: The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study for depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated of their characteristics and bacterial microbiome changes.Results: The 16S ribosomal RNA gene sequencing of feces showed RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure for the first time. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio. While, RbCl significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. Besides, with regarding to the composition of archaea, RbCl significantly enhanced the abundances of Crenarchaeota, Thermoprotei, Sulfolobales, Sulfolobaceae and Sulfolobus lineages. Conclusions: These results revealed that enrichments of Clostridium XlVa and Alistipes could affect the levels of serotonin, a critical signaling molecule of brain-gut-microbiota axis. Therefore, anticancer and anti-depressant effects of RbCl might be partly mediated by modifying brain-gut-microbiota axis.

2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background: The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes.Results: The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level.Conclusions: Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level. Conclusions Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention.


2020 ◽  
Author(s):  
Qian Chen ◽  
Zhiguo He ◽  
Yuting Zhuo ◽  
Shuzhen Li ◽  
Wenjing Yang ◽  
...  

Abstract Background The intestinal microbiota plays an important role in host health. Although rubidium (Rb) has been used to study for depression and cancers, the interaction between intestinal microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and intestinal microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated of their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of feces showed RbCl generally maintained the microbial community diversity, while the shifts in gut microbial composition were apparent after RbCl exposure for the first time. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio. While, RbCl significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. Besides, with regarding to the composition of archaea, RbCl significantly enhanced the abundances of Crenarchaeota, Thermoprotei, Sulfolobales, Sulfolobaceae and Sulfolobus lineages. Conclusions These results revealed that enrichments of Clostridium XlVa, Alistipes and sulfate-reducing bacteria could act on brain-gut-microbiota axis by affecting serotonergic system and immune system. Therefore, it was likely that RbCl would have beneficial anti-effects on depression and cancers by modifying brain-gut-microbiota axis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Öhman ◽  
Anders Lasson ◽  
Anna Strömbeck ◽  
Stefan Isaksson ◽  
Marcus Hesselmar ◽  
...  

AbstractPatients with ulcerative colitis (UC) have an altered gut microbiota composition, but the microbial relationship to disease activity needs to be further elucidated. Therefore, temporal dynamics of the fecal microbial community during remission and flare was determined. Fecal samples were collected at 2–6 time-points from UC patients during established disease (cohort EST) and at diagnosis (cohort NEW). Sampling range for cohort EST was 3–10 months and for cohort NEW 36 months. Relapses were monitored for an additional three years for cohort EST. Microbial composition was assessed by Genetic Analysis GA-map Dysbiosis Test, targeting ≥ 300 bacteria. Eighteen patients in cohort EST (8 with maintained remission and 10 experiencing a flare), provided 71 fecal samples. In cohort NEW, 13 patients provided 49 fecal samples. The microbial composition showed no clustering related to disease activity in any cohort. Microbial dissimilarity was higher between than within patients for both cohorts, irrespective of presence of a flare. Microbial stability within patients was constant over time with no major shift in overall composition nor modification in the abundance of any specific species. Microbial composition was not affected by intensified medical treatment or linked to future disease course. Thus in UC, the gut microbiota is highly stable irrespective of disease stage, disease activity or treatment escalation. This suggests that prolonged dietary interventions or repeated fecal transplantations are needed to be able to induce permanent alterations of the gut microbiota.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


2018 ◽  
Author(s):  
YP Chen ◽  
LL Tan ◽  
DM Chen ◽  
Q Xu ◽  
JP Song ◽  
...  

BackgroundAlthough dietary patterns are recognized to affect health by interfering with gut microbiota homeostasis, whether live or dead bacteria-bearing spring mineral water (MW) would also exert beneficial effects on health upon curing gut dysbiosis remains unknown.ResultsDue to harboring live bacteria, the heated but unboiled MW from Bama, where centenarians are ubiquitously inhabited, reshapes the gut microbiota from a traveler-type to a local resident-type except for Prevotella. While chondroitin sulfate, a component occurring in livestock and poultry meats, increases the richness of sulfatase-secreting bacteria and sulfate-reducing bacteria, Bama MW dampens the overgrowth of those colon-thinning bacteria and hampers the overexpression of multiple genes responsible for anti-inflammation, anti-oxidation, anti-hypoxia, anti-mutagenesis, and anti-tumorigenesis.ConclusionsBama spring MW prevents the early-phase onset of breast cancer by curating gut dysbiosis. MW also compromises chromosomal DNA damage and ameliorate mitochondrial dysfunctions, implying it may extend lifespan.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1736 ◽  
Author(s):  
Olga Senko ◽  
Olga Maslova ◽  
Marina Gladchenko ◽  
Sergey Gaydamaka ◽  
Argam Akopyan ◽  
...  

Sulfur recovery from organic molecules such as toxic sulfones is an actual problem, and its solution through the use of environmentally friendly and nature-like processes looks attractive for research and application. For the first time, the possible bioconversion of organic sulfones (benzo-and dibenzothiophene sulfones) to inorganic sulfide under anaerobic conditions with simultaneous biogas production from glucose within a methanogenesis process is demonstrated. Biogas with a methane content of 50.7%–82.1% was obtained without H2S impurities. Methanogenesis with 99.7%–100% efficiency and 97.8%–100% conversion of benzo- and dibenzothiophene sulfones (up to 0.45 mM) to inorganic sulfide were obtained in eight days by using a combination of various anaerobic biocatalysts immobilized in a poly(vinyl alcohol) cryogel. Pure cell cultures of sulfate-reducing bacteria and/or H2-producing bacteria were tested as additives to the methanogenic activated sludge. The immobilized activated sludge “enhanced” by bacterial additives appeared to retain its properties and be usable multiple times for the conversion of sulfones under batch conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenyuan Xu ◽  
Tianhao Liu ◽  
Qingli Zhou ◽  
Jing Chen ◽  
Jiali Yuan ◽  
...  

Chronic constipation is a common gastrointestinal dysfunction, but its aetiology and pathogenesis are still unclear. Interestingly, the compositions of the gut microbiota in constipation patients and healthy controls are different. Various studies reported the different gut microbiota alterations in constipation patients, but most studies indicated that constipation patients showed the decreased beneficial bacteria and the reduced species richness of gut bacteria. Besides, the alterations in the gut microbiota may lead to constipation and constipation-related symptoms and the regulation of gut microbiota has a positive effect on gut functional diseases such as constipation. Microbial treatment methods, such as probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, can be used to regulate gut microbiota. Increasing evidences have suggested that Chinese medicine (CM) has a good therapeutic effect on chronic constipation. Chinese medicine is well known for its multitarget and multimode effects on diseases as well as less side effects. In previous studies, after the treatment of constipation with CM, the gut microbiota was restored, indicating that the gut microbiota might be the target or important way for CM to exert its efficacy. In this review, we summarized the effects of microbial treatment and CM on the gut microbiota of constipation patients and discussed the relationship between CM and gut microbiota.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Yan Hua ◽  
Heqin Cao ◽  
Jiao Wang ◽  
Fengping He ◽  
Guangshun Jiang

Abstract Background Gut microbes significantly contribute to nutrient digestion and absorption, intestinal health and immunity, and are essential for the survival and environmental adaptation of wild animals. However, there are few studies on the gut microbiota of captive and wild North China leopard (Panthera pardus japonensis). Results A total of 10 mainly bacterial phyla were identified in the fecal microbiota of North China leopard, Lachnoclostridium (p = 0.003), Peptoclostridium (p = 0.005), Bacteroides (p = 0.008), Fusobacterium (p = 0.017) and Collinsella (p = 0.019) were significantly higher than those of wild North China leopard. Distinct differences in the fecal metabolic phenotypes of captive and wild North China leopard were found, such as content of l-methionine, n-acetyl-l-tyrosine, pentadecanoic acid and oleic acid. Differentially abundant gut microbes were associated with fecal metabolites, especially the bacteria in Firmicutes and Bacteroidetes, involved in the metabolism of N-acetyl-L-alanine and D-quinovose. Conclusion This study reports for the first time the differences in gut microbiota abundance between captive and wild North China leopard, as well as significant differences in fecal metabolic phenotypes between two groups.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 327 ◽  
Author(s):  
Paul Cherry ◽  
Supriya Yadav ◽  
Conall R. Strain ◽  
Philip J. Allsopp ◽  
Emeir M. McSorley ◽  
...  

Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to “a substrate that is selectively utilised by host microorganisms conferring a health benefit”, which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.


Sign in / Sign up

Export Citation Format

Share Document