scholarly journals Antibiotic-induced alterations and repopulation dynamics of yellowtail kingfish microbiota

2020 ◽  
Author(s):  
Thibault Philippe Raymond Albert Legrand ◽  
Sarah R. Catalano ◽  
Melissa L. Wos-Oxley ◽  
James W. Wynne ◽  
Laura S. Weyrich ◽  
...  

Abstract Background The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish (Seriola lalandi) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. Results Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish – an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more ‘normal’ (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. Conclusion As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.

2020 ◽  
Author(s):  
Thibault Philippe Raymond Albert Legrand ◽  
Sarah R. Catalano ◽  
Melissa L. Wos-Oxley ◽  
James W. Wynne ◽  
Laura S. Weyrich ◽  
...  

Abstract Background The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish ( Seriola lalandi ) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. Results Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish – an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more ‘normal’ (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. Conclusion As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.


2020 ◽  
Author(s):  
Thibault Philippe Raymond Albert Legrand ◽  
Sarah R. Catalano ◽  
Melissa L. Wos-Oxley ◽  
James W. Wynne ◽  
Laura S. Weyrich ◽  
...  

Abstract Background The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish ( Seriola lalandi ) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. Results Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish – an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more ‘normal’ (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. Conclusion As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 849
Author(s):  
Fabiola A. Sepúlveda ◽  
Luis A. Ñacari ◽  
Maria Teresa González

Blood flukes are digeneans that infect wild and farmed fish that can cause a severe and potentially lethal disease in farmed fish. These parasites are undetectable in the larval stage based on macroscopic observations in the definitive host with the infection becoming evident when eggs accumulate in the branchial vessels. There are nine known species of the genus Paradeontacylix and seven exclusively parasitize Seriola spp. from several geographical areas. Seriola lalandi aquaculture farms are emerging at various localities in northern Chile. Here, we report, for the first time, two blood fluke species parasitizing S. lalandi in the Southeastern Pacific (Chile). In the laboratory, the gills and heart of fish were removed. The retained blood flukes were separated according to the infection site, fixed in 70% or 95% ethanol for taxonomic and molecular analysis, respectively. Morphometrical differences among the fluke species were evaluated with a principal component analysis (PCA) using proportional body measurements. Phylogenetic trees were constructed based on 28S rDNA, cox1 mDNA using Bayesian inference (BI), and maximum likelihood (ML). Based on morphology, morphometry, and molecular analyses, two new species are proposed: P. humboldti n. sp. from the gills and P. olivai n. sp. from the heart of S. lalandi. Both were clearly distinguished from other species of Paradeontacylix by a combination of morphologic features (posterior tegumental spines, testes arrangement, body size). The genetic distance (based on cox1) among species was >10%. P. humboldti n. sp. and P. olivai n. sp. are sister species (with a common ancestor) independent of P. godfreyi from S. lalandi in Australia. The newly identified parasites may pose a risk to farmed S. lalandi as aporocotylids have been the cause of diseases in farmed fish from other geographical areas. In addition, some cages of S. lalandi are currently maintained in an open circulating system, which could favor the transmission of these parasites (if involved hosts are present in the environment).


Fishes ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Chinh Thi My Dam ◽  
Mark Booth ◽  
Igor Pirozzi ◽  
Michael Salini ◽  
Richard Smullen ◽  
...  

Gut microbiota plays a crucial role in nutrient digestibility and fish health. This study aimed to investigate the effects of alternative feed raw materials on the bacterial communities in the distal intestine and its relationship with nutrient digestibility in yellowtail kingfish (YTK), Seriola lalandi. Two 4-week digestibility trials were conducted to evaluate fish meal (FM), two sources of poultry by-product meal (PBM-1 & PBM-2), blood meal (BLM), faba bean meal (FBM), corn gluten meal (CGM), soy protein concentrate (SPC) and wheat flour (WH). The nutrient digestibility value was determined using the stripping fecal collection method. Bacterial communities were characterized by high-throughput sequencing based on V3-V4 region of the 16S rRNA gene. The most abundant phylum identified in the present study was Proteobacteria. A significant change in the distal intestine was observed in fish fed diets containing CGM and BLM, characterized by a reduction of species richness and diversity. Additionally, significant correlation between nutrient digestibility and intestinal microbiota was observed. Allivibrio, Vibrio, Curvibacter, Ruminococcaceae, and Clostridium were positively correlated, whereas Ralstonia genus was negatively correlated with nutrient digestibility. This study demonstrated that intestinal microbiota could be a useful tool for evaluating the digestibility of feed raw materials; however, further culture-based study is needed to confirm this observation.


2020 ◽  
Author(s):  
Jeremiah J Minich ◽  
Cecilia Power ◽  
Michaela Melanson ◽  
Rob Knight ◽  
Claire Webber ◽  
...  

AbstractAquaculture is the fastest growing primary industry worldwide. Marine finfish culture in open ocean net pens, or pontoons, is one of the largest growth areas and is currently the only way to rear high value fish such as bluefin tuna. Ranching involves catching wild juveniles, stocking in floating net pens and fattening for four to eight months. Tuna experience several parasite-induced disease challenges in culture that can be mitigated by application of praziquantel (PZQ) as a therapeutic. In this study, we characterized the microbiome of ranched southern Bluefin Tuna, Thunnus maccoyii, across four anatomic sites (gill, skin, digesta, and anterior kidney) and evaluated environmental and pathological factors that influence microbiome composition, including the impact of PZQ treatment on microbiome stability. Southern bluefin tuna gill, skin, and digesta microbiome communities are unique and potentially influenced by husbandry practices, location of pontoon growout pens, and treatment with the antiparasitic PZQ. There was no significant relationship between the fish mucosal microbiome and incidence or abundance of adult blood fluke in the heart or fluke egg density in the gill. An enhanced understanding of microbiome diversity and function in high-value farmed fish species such as bluefin tuna is needed to optimize fish health and improve aquaculture yield. Comparison of the bluefin tuna microbiome to other fish species, including Seriola lalandi (yellowtail kingfish), a common farmed species from Australia, and Scomber japonicus (Pacific mackerel), a wild caught Scombrid relative of tuna, showed the two Scombrids had more similar microbial communities compared to other families. The finding that mucosal microbial communities are more similar in phylogenetically related fish species exposes an opportunity to develop mackerel as a model for tuna microbiome and parasite research.


2012 ◽  
pp. 61-83 ◽  
Author(s):  
M. Ershov

According to the latest forecasts, it will take 10 years for the world economy to get back to “decent shape”. Some more critical estimates suggest that the whole western world will have a “colossal mess” within the next 5–10 years. Regulators of some major countries significantly and over a short time‑period changed their forecasts for the worse which means that uncertainty in the outlook for the future persists. Indeed, the intensive anti‑crisis measures have reduced the severity of the past problems, however the problems themselves have not disappeared. Moreover, some of them have become more intense — the eurocrisis, excessive debts, global liquidity glut against the backdrop of its deficit in some of market segments. As was the case prior to the crisis, derivatives and high‑risk operations with “junk” bonds grow; budget problems — “fiscal cliff” in the US — and other problems worsen. All of the above forces the regulators to take unprecedented (in their scope and nature) steps. Will they be able to tackle the problems which emerge?


2020 ◽  
Vol 35 (3) ◽  
Author(s):  
Tayyaba Gul Malik ◽  
Hina Nadeem ◽  
Eiman Ayesha ◽  
Rabail Alam

Objective: To study the effect of short-term use of oral contraceptive pills on intra-ocular pressures of women of childbearing age.   Methods: It was a comparative observational study, conducted at Arif memorial teaching hospital and Allied hospital Faisalabad for a period of six months. Hundred female subjects were divided into two groups of 50 each. Group A, included females, who had been taking oral contraceptive pills (OCP) for more than 6 months and less than 36 months. Group B, included 50 age-matched controls, who had never used OCP. Ophthalmic and systemic history was taken. Careful Slit lamp examination was performed and intraocular pressures (IOP) were measured using Goldman Applanation tonometer. Fundus examination was done to rule out any posterior segment disease. After collection of data, we analyzed and compared the intra ocular pressures between the two groups by using ANOVA in SPSS version 21.   Results: Average duration of using OCP was 14.9 months. There was no significant difference of Cup to Disc ratios between the two groups (p= 0.109). However, significant difference was noted between the IOP of OCP group and controls. (p=0.000). Conclusion: OCP significantly increase IOP even when used for short time period.


Author(s):  
L. Orazi ◽  
A. Rota ◽  
B. Reggiani

AbstractLaser surface hardening is rapidly growing in industrial applications due to its high flexibility, accuracy, cleanness and energy efficiency. However, the experimental process optimization can be a tricky task due to the number of involved parameters, thus suggesting for alternative approaches such as reliable numerical simulations. Conventional laser hardening models compute the achieved hardness on the basis of microstructure predictions due to carbon diffusion during the process heat thermal cycle. Nevertheless, this approach is very time consuming and not allows to simulate real complex products during laser treatments. To overcome this limitation, a novel simplified approach for laser surface hardening modelling is presented and discussed. The basic assumption consists in neglecting the austenite homogenization due to the short time and the insufficient carbon diffusion during the heating phase of the process. In the present work, this assumption is experimentally verified through nano-hardness measurements on C45 carbon steel samples both laser and oven treated by means of atomic force microscopy (AFM) technique.


2021 ◽  
Author(s):  
Marc Debus ◽  
Jale Tosun

AbstractThe COVID-19 pandemic has forced governments to impose major restrictions on individual freedom in order to stop the spread of the virus. With the successful development of a vaccine, these restrictions are likely to become obsolete—on the condition that people get vaccinated. However, parts of the population have reservations against vaccination. While this is not a recent phenomenon, it might prove a critical one in the context of current attempts to manage the COVID-19 pandemic. Consequently, the task of designing policies suitable for attaining high levels of vaccination deserves enhanced attention. In this study, we use data from the Eurobarometer survey fielded in March 2019. They show that 39% of Europeans consider vaccines to cause the diseases which they should protect against, that 50% believe vaccines have serious side effects, that 32% think that vaccines weaken the immune system, and that 10% do not believe vaccines are tested rigorously before authorization. We find that—even when controlling for important individual-level factors—ideological extremism on both ends of the spectrum explains skepticism of vaccination. We conclude that policymakers must either politicize the issue or form broad alliances among parties and societal groups in order to increase trust in and public support for the vaccines in general and for vaccines against COVID-19 in particular, since the latter were developed in a very short time period and resulted—in particular in case of the AstraZeneca vaccine—in reservations because of the effectiveness and side effects of the new vaccines.


Sign in / Sign up

Export Citation Format

Share Document