Improvement of eco-efficient self-compacting concrete manufacture by recycling high quantity of waste materials

Author(s):  
NAHLA Naji HILAL ◽  
Marijana Hadzima Nyarko

Abstract Recycling plastic waste to obtain new materials such as concrete or mortar seems to be one of the best solutions for disposing of plastic waste. Second, in the construction industry, due to the increasing costs of landfills and the lack of a natural large aggregate, the increased interest in crushed ceramics is significant. The third type of waste that is dealt with in this article is tea ash because tea is the second most consumed beverage in the world and large amounts of waste are generated. This article attempts to develop the appropriate characteristics of self-compacting concrete by adding the following waste materials: plastic waste, tea waste and collapsed ceramics. In this paper, Fresh and hardened properties of self-compacting concrete with waste materials were investigated. The diameter and time of sediment flow, segregation, L-box ratio, and density of freshly compacted concrete mixtures were measured. Moreover, both 7, 14, and 28-day bending strength and 7 and 28-day bending strength of hardened self-compacting concrete samples were measured. The results proved the possibility of using plastic waste, tea waste and collapsed ceramics in self-compacted concrete, because they do not significantly reduce the hardened and fresh properties of self-compacted concrete.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3863
Author(s):  
Deng-Fong Lin ◽  
Wei-Jhu Wang ◽  
Chia-Wen Chen ◽  
Kuo-Liang Lin

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay’s smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.


2020 ◽  
Vol 5 ◽  
pp. 75-83
Author(s):  
Ahmed Abdalqader ◽  
Mohammed Sonebi

The utilization of fine powders as fillers in self-compacting concrete (SCC) application is widespread, particularly in Europe. The incorporation of these fillers to attain the self-compatibility properties of SCC seems to be cheaper than the use of chemical admixtures. Among the wide range of potential fillers, dolomitic powders, particularly generated as by-products from quarry’s processing, are locally available and can be used to produce SCC. Few studies have shown that dolomitic powders can be incorporated in the SCC’s mix design, resulting in acceptable fresh and hardened properties of SCC. The particle size distribution and fineness of the dolomitic powder as well as the level of addition are the key factors affecting those properties. The influence of the chemical nature of the dolomitic powder on the properties of SCC, particularly the durability (e.g. alkali-carbonate reaction), is yet to be investigated. Furthermore, more efforts are still required to investigate the use of dolomitic by-products in the production of SCC.


2020 ◽  
Vol 992 ◽  
pp. 135-142
Author(s):  
I. Pulyaev ◽  
S. Pulyaev

The creation of self-compacting concrete (SCC) is associated with the introduction of plasticizing additives based on polycarboxylate esters (PCE). The first patent for a group of substances proposed for use as superplasticizers for concrete, was declared in the early 80-ies of the last century in Japan. In the mid 90-ies superplasticizers based on esters of polycarboxylates began to be used in Europe. In Russia, the use of self-compacting concrete began much later, and in bridge and tunnel construction almost a few years ago. Currently, in the European Union, 70-80% of reinforced concrete structures are made or erected from self-compacting concrete mixtures, and concrete is commonly called self-compacting. In Russia, such concretes are sometimes called self-leveling. The volume of their use is still small.


Sign in / Sign up

Export Citation Format

Share Document