Revealing 3D atomic packing in liquid-like solids

Author(s):  
Yakun Yuan ◽  
Dennis Kim ◽  
Jihan Zhou ◽  
Dillan Chang ◽  
Fan Zhu ◽  
...  

Abstract Liquids and solids are two fundamental states of matter. However, due to the lack of direct experimental determination, our understanding of the 3D atomic structure of liquids and amorphous solids remained speculative. Here we advance atomic electron tomography to determine for the first time the 3D atomic positions in monatomic amorphous materials, including a Ta thin film and two Pd nanoparticles. We observe that pentagonal bipyramids are the most abundant atomic motifs in these amorphous materials. Instead of forming icosahedra, the majority of pentagonal bipyramids arrange into a novel medium-range order, named the pentagonal bipyramid network. Molecular dynamic simulations further reveal that pentagonal bipyramid networks are prevalent in monatomic amorphous liquids, which rapidly grow in size and form icosahedra during the quench from the liquid state to glass state. The experimental method and results are expected to advance the study of the amorphous-crystalline phase transition and glass transition at the single-atom level.

2017 ◽  
Vol 23 (S1) ◽  
pp. 1886-1887
Author(s):  
Yongsoo Yang ◽  
Chien-Chun Chen ◽  
M. C. Scott ◽  
Colin Ophus ◽  
Rui Xu ◽  
...  

2020 ◽  
Vol 26 (S2) ◽  
pp. 1848-1850
Author(s):  
Peter Ercius ◽  
Jihan Zhou ◽  
Yongsoo Yang ◽  
Yao Yang ◽  
Dennis Kim ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juhyeok Lee ◽  
Chaehwa Jeong ◽  
Yongsoo Yang

AbstractFunctional properties of nanomaterials strongly depend on their surface atomic structures, but they often become largely different from their bulk structures, exhibiting surface reconstructions and relaxations. However, most of the surface characterization methods are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution, and single-atom level determination of the 3D surface atomic structure for general 3D nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep learning-based missing data retrieval combined with atomic electron tomography, the surface atomic structure was reliably measured. We found that <$$100$$ 100 > and <$$111$$ 111 > facets contribute differently to the surface strain, resulting in anisotropic strain distribution as well as compressive support boundary effect. The capability of single-atom level surface characterization will not only deepen our understanding of the functional properties of nanomaterials but also open a new door for fine tailoring of their performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2019 ◽  
Vol 21 (40) ◽  
pp. 22598-22610 ◽  
Author(s):  
Nan Zhang ◽  
Fuyi Chen ◽  
Longfei Guo

We demonstrate for the first time that the Pd1Ag single-atom alloys exhibit a high catalytic activity for formate oxidation reaction.


2016 ◽  
Vol 120 (13) ◽  
pp. 7122-7132 ◽  
Author(s):  
Patrick Steinegger ◽  
Masato Asai ◽  
Rugard Dressler ◽  
Robert Eichler ◽  
Yusuke Kaneya ◽  
...  
Keyword(s):  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1956
Author(s):  
Zhicheng Yan ◽  
Yan Liu ◽  
Shaopeng Pan ◽  
Yihua Hu ◽  
Jing Pang ◽  
...  

Melt-spun metallic Al86Ni9La5 glassy ribbons solidified at different circumferential speeds (Sc) were subjected to high-energy ball milling at room and cryogenic temperatures. Crystallization induced by milling was found in the Al86Ni9La5 solidified at lower circumferential speed (Sc = 14.7 m/s), while the Al86Ni9La5 with Sc = 36.6 m/s kept amorphous. Besides, a trend of structural rejuvenation during milling process was observed, as the onset temperatures (Tx1, Tx2) and the crystallization enthalpies (ΔH1, ΔH2) first decreased and then increased along with the milling time. We explored the structural origin of crystallization by ab initio molecular dynamic simulations and found that the tricapped trigonal prism (TTP) Ni-centered clusters with a higher frequency in samples solidified at a lower cooling rate, which tend to link into medium-range orders (MROs), may promote crystallization by initiating the shear bands during milling. Based on the deformation mechanism and crush of metallic glasses, we presented a qualitative model to explain the structural rejuvenation during milling.


2021 ◽  
Author(s):  
Yifan Hu ◽  
Hongxuan Li ◽  
Ze-Sheng Li ◽  
Bolin Li ◽  
Shaoyu Wang ◽  
...  

In 2011, Zhang's research team, in cooperation with Li and Liu, reported the Pt1/FeOx atomically dispersed catalysts for the first time in the world, and based on this, proposed the...


2020 ◽  
Vol 8 (32) ◽  
pp. 16142-16165 ◽  
Author(s):  
Mingquan Xu ◽  
Aowen Li ◽  
Meng Gao ◽  
Wu Zhou

The advances in aberration correction have enabled atomic-resolution imaging and spectroscopy in scanning transmission electron microscopy (STEM) under low primary voltages and pushed their detection limit down to the single-atom level.


Sign in / Sign up

Export Citation Format

Share Document