scholarly journals C and N Pools In Afforested Pine Forests and Natural Shrublands 

Author(s):  
Anna De Marco ◽  
Speranza Claudia Panico ◽  
valeria memoli ◽  
Lucia Santorufo ◽  
Armando Zarrelli ◽  
...  

Abstract AimsPlant cover and microclimatic conditions can profoundly alter the balance between productivity and decay, with relevant effects on soil C and N pools. In this contest, the aim of the present study was to assess how, in Mediterranean areas, soil properties and C and N sequestration differs between afforested pine forests and natural shrublands in different microclimatic conditions at low and high elevations.MethodsThe study was performed along the soil profile distinguishing between the organic layers, fermentation and humic layers, and surface mineral soils. The comparison between plant covers and elevations were carried out for C and N pools and soluble fractions, molecular characterization by solid state 13C NMR of organic layers and by 1HNMR of soil soluble fractions, potential mineralization rates and microbial and fungal amounts.ResultsOur data confirm that coniferous tree species sequester C faster than shrubs and herbaceous species especially at low elevation under favourable microclimatic conditions. Soil C and N pools reflect changes in the chemical composition of the upper organic layers and of soil soluble organic matter. In pine forests, the higher concentration of N in the upper organic layer speeds up the N loss in the fermentative layer and stimulates humus formation and C accumulation at low elevations.ConclusionsPlant cover and microclimatic conditions drive the C sequestration rate and the soil organic matter stability. Chemical changes highlighted by nuclear magnetic resonance spectroscopy can clarify patterns of decay processes and help to make predictions in a climate change scenario.

Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 247-258 ◽  
Author(s):  
Yun Zhang ◽  
Mulualem Tigabu ◽  
Zhigang Yi ◽  
Huitong Li ◽  
Zheng Zhuang ◽  
...  

Soil Research ◽  
2002 ◽  
Vol 40 (1) ◽  
pp. 149 ◽  
Author(s):  
R. Stenger ◽  
G. F. Barkle ◽  
C. P. Burgess

In a 6-month laboratory incubation study, we compared the net C and N mineralisation of the soil organic matter (SOM) of 3 pasture soils and the mineralisation of glucose-C in intact versus sieved/refilled soil cores. The main questions were whether the net C and N mineralisation differed between intact and sieved/refilled soil cores after a conditioning period of 4 weeks, and how much the C and N mineralisation of SOM differed among the similarly managed pasture soils. Apart from the net nitrogen mineralisation in one soil, there were no significant differences in cumulated mineralisation of C or N from SOM between the core types. In a fine-textured soil, net mineralisation of glucose-C differed significantly between core types, which was attributed to the different distribution of the amended glucose in intact and sieved/refilled cores. Net C and N mineralisation of SOM were closely correlated in the sieved/refilled cores, whereas no significant correlation was found in the intact cores. Expressing net C and N mineralisation as percentages of total soil C and N showed a more than 2-fold maximum difference between the soils in spite of similar long-term organic matter input. Subsequent studies should be done using more replicates and wider diameter, better controllable cores on ceramic plates. CO2, net nitrogen mineralisation (NNM), soil microbial biomass.


2007 ◽  
Vol 120 (2-4) ◽  
pp. 250-258 ◽  
Author(s):  
I.K. Okore ◽  
H. Tijani-Eniola ◽  
A.A. Agboola ◽  
E.A. Aiyelari

Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 891 ◽  
Author(s):  
AJ Gijsman

An area of native savanna on an Oxisol in the Eastern Plains of Colombia was opened and sown to various rotations of grass or grass-legume pasture with rice. After 4.5 years, the soil was sampled for studying the effect of land conversion on soil aggregation and on the distribution of total and particulate soil organic matter across the aggregate size classes. The size distribution of undisturbed aggregates did not vary among treatments. Five different methods were used to measure wet aggregate stability (WAS). The choice of method affected the WAS average across treatments as well as the differences among treatments. The only consistent observation was the lower WAS under monocropped rice compared with the other treatments. Inclusion of a legume in a pasture hardly affected aggregate stability. In contrast to the WAS measurements, which were carried out with soil aggregates of 1-2 mm, wet sieving of whole-soil samples revealed additional differences among treatments: large macroaggregates (>2 mm) proved less stable under those treatments that involved soil disturbance through ploughing and harvesting. Total soil C and N content did not vary among treatments, despite considerable differences in plant production levels. The C concentration, but not the N concentration, declined with decreasing aggregate size. The distribution of whole-soil C and N content across aggregate size classes depended more on the amount of soil in a certain size class than on the size class's C or N concentration. Those treatments that involved frequent soil disturbance had a smaller fraction of large macroaggregates (>2 mm) and, as a consequence, less C and N in the large macroaggregate fraction. The particulate organic matter (POM) fraction accounted for only 6.2-8.5% of total soil carbon. The small size of this pool makes it unlikely that POM can serve in these Oxisols for estimating the amount of soil organic matter with medium turnover rate, as suggested by others.


2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paulina B. Ramírez ◽  
Francisco J. Calderón ◽  
Michelle Haddix ◽  
Emanuele Lugato ◽  
M. Francesca Cotrufo

Large-scale quantification of soil organic carbon (C) and nitrogen (N) stocks and their distribution between particulate (POM) and mineral-associated (MAOM) organic matter is deemed necessary to develop land management strategies to mitigate climate change and sustain food production. To this end, diffuse reflectance mid-infrared spectroscopy (MIR) coupled with partial least square (PLS) analysis has been proposed as a promising method because of its low labor and cost, high throughput and the potential to estimate multiple soil attributes. In this paper, we applied MIR spectroscopy to predict C and N content in bulk soils, and in POM and MAOM, as well as soil properties influencing soil C storage. A heterogeneous dataset including 349 topsoil samples were collected under different soil types, land use and climate conditions across the European Union and the United Kingdom. The samples were analyzed for various soil properties to determine the feasibility of developing MIR-based predictive calibrations. We obtained accurate predictions for total soil C and N content, MAOM C and N content, pH, clay, and sand (R2> 0.7; RPD>1.8). In contrast, POM C and N content were predicted with lower accuracies due to non-linear dependencies, suggesting the need for additional calibration across similar soils. Furthermore, the information provided by MIR spectroscopy was able to differentiate spectral bands and patterns across different C pools. The strength of the correlation between C pools, minerals, and C functional groups was land use-dependent, suggesting that the use of this approach for long-term soil C monitoring programs should use land-use specific calibrations.


2013 ◽  
Vol 13 (4) ◽  
pp. 641-653 ◽  
Author(s):  
María Almagro ◽  
José Ignacio Querejeta ◽  
Carolina Boix-Fayos ◽  
María Martínez-Mena

2014 ◽  
Vol 312 ◽  
pp. 161-169 ◽  
Author(s):  
Yongfu Li ◽  
Jiaojiao Zhang ◽  
Scott X. Chang ◽  
Peikun Jiang ◽  
Guomo Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document