scholarly journals Evaluation and validation of technical procedure for foundry coke mechanical strength testing

2020 ◽  
Author(s):  
Bartosz Mertas ◽  
Aleksander Sobolewski ◽  
Grzegorz Rozycki

Abstract Foundry coke is a special type of coke with lumps size usually bigger than 100 mm. Therefore it is difficult to asses its physical properties representatively for whole lot. There exist international standards for coke sampling and testing strength index (usually Micum test). Nevertheless companies dealing with foundry coke notified problems with methodology of sampling and sample preparation for the test. Manual sampling according to ISO 18283 is very labour extensive and with connection with literally proceeding with ISO 566 gives non-representative results for foundry coke +100 mm. For this reason on the basis of these standards there was evaluated procedure for coke sampling and testing strength indexes which is more practical for plant routine use and gives more reliable results in comparison to international standard. This article presents results of work aimed at checking usability of ISO standards provisions for foundry coke testing and evaluation and validation of simplified procedure.

Alloy Digest ◽  
2009 ◽  
Vol 58 (8) ◽  

Abstract DMV 59 is the material of choice for a wide variety of applications where significant corrosion resistance and high mechanical strength is necessary. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-672. Producer or source: Mannesmann DMV Stainless USA Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (5) ◽  

Abstract BOFORS 2RM2 is a hardenable stainless cast steel having good weldability, high mechanical strength and improved corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: SS-169. Producer or source: Aktiebolaget Bofors.


Alloy Digest ◽  
1995 ◽  
Vol 44 (3) ◽  

Abstract ZERON 25 is an alloy developed to combat severe oil field duties where oil, gas, water are contaminated with high levels of chlorides and hydrogen sulfide. The alloy has good mechanical strength and resistance to localized corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-584. Producer or source: Weir Material Services Ltd.


Alloy Digest ◽  
1997 ◽  
Vol 46 (11) ◽  

Abstract SANDVIK 6R35 is an austenitic titanium stabilized chromium nickel steel with good mechanical strength at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-699. Producer or source: Sandvik.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Uwe Hempelmann

Abstract The chapter defines the terms pigments and fillers according to international standards and gives a short overview over the history and economic aspects and uses. The general common chemical and physical properties are outlined and basic methods for characterization of the pigments and their behavior in binders are described.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Soonja Park

AbstractThe purpose of this study is to compare and analyze physical properties of different fluorescent fabrics and retroreflective materials to determine their compliance to international standard for high-visibility warning clothing. Four fluorescent fabrics were selected for the study: a PET 71%/Cotton 23%/PU 6% fabric used in public road cleaner uniforms in Korea (S1), an ISO-compliant Japan-made PET 65%/Cotton 35% + conductive fabric (S2), and a randomly selected Korean-made PET 100% fabric for adults (S3) and children (S4). Selected samples were evaluated on their seven criteria in ISO 20471. Subsequently, luminance and retroreflective properties of four retroreflective materials were compared: a 3M (USA) plain sample (R1), a rectangular-patterned sample made by ‘R’ company (Korea) (R2), a plain sample also by ‘R’ (R3), and a random plain sample from a marketplace in Korea (R4). As a result, S1 was the most similar to ISO-compliant S2 and moisture regain could be improved by adjusting the cotton ratio or surface finishing. However, S3 and S4 seemed less suitable. Second, two bead type (R1, R4) and two prism type (R2, R3) retroreflective materials showed luminance in the order of R4 > R2 ≥ R1 > R3. General retroreflective properties and post-5-condition retroreflective properties of all four samples were ISO-compliant, and the retroreflective property at observation angle of 12′ and incidence angle of 5° of R2, R3, and R4 against R1 ranged between 81.4% and 158.4%. Despite the variance, all four samples were ISO-compliant and suggest that R2, R3, and R4 are possible materials for export.


2021 ◽  
Vol 6 ◽  
pp. 4-17
Author(s):  
V.V Koval ◽  
D.V. Miroshnichenko ◽  
O.V. Bogoyavlenska

The article substantiates the importance and problems of determining of such an indicator of the quality of solid fossil fuels, as mechanical strength. The strength of coal depends on a large number of factors (viscosity, brittleness, properties of structural bonds, etc.), the change of which is impossible to take into account. Therefore, the strength of coal in the sample, piece, pack and formation must be represented by some integral index, which inevitably fluctuates around a certain average value and can be determined only approximately. The evaluation of the strength properties of coal should be carried out on the basis of mass tests using statistical methods that allow to calculate the average value and coefficient of variation. Since the strength dispersion is mainly due to the natural inhomogeneity of the coal, the excessive accuracy of the measuring instruments has almost no effect on the statistical characteristics. Laboratory methods of mechanical tests of mine samples, in comparison with full-scale, as a rule, are very accessible and, at qualitative performance of tests, are highly reliable. The properties of coal as an object of enrichment and use are largely related to its physical properties. The physical properties of coal and mineral impurities significantly affect the formation of the main parameters that characterize the particle size distribution and fractional composition, it`s changes during the mining, transportation and enrichment processes. The basic physical and mechanical properties of solid fuels from the point of view of their industrial processing have been listed, the review has been made of the most widespread methods of study of coals mechanical durability and the equipment used for these purposes. The main advantages and disadvantages have been summarized of these methods, as well as their relationship. The factors have been Indicated tinfluencing the mechanical strength of coal. The expediency of using existing methods from the point of view of informativeness for thesphere of its application has been estimated. The methods common in the coal processing industry are considered in more detail. Keywords: coal, solid fuel mining, mechanical strength, determination methods, influencing factors, grinding strength, crushing index. Corresponding author V.V. Koval, e-mail: [email protected]


2021 ◽  
Vol 22 (21) ◽  
pp. 11600
Author(s):  
Dong Jin Choi ◽  
Kyoung Choi ◽  
Sang Jun Park ◽  
Young-Jin Kim ◽  
Seok Chung ◽  
...  

Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.


1966 ◽  
Vol 49 (3) ◽  
pp. 528-533
Author(s):  
Emanuel Borker ◽  
Arthur Stefanucci ◽  
Alfred A Lewis

Abstract The history of gelatin and gelatin dessert strength testing is reviewed. The current AOAC method for dessert gels using the Bloom Gelometer was found too variable for control of gelatin dessert production in a multi-plant operation. Variability can be reduced with a lower shot flow rate, rigid control of sample preparation, and frequent maintenance in gelometer alignment and adjustment. Detailed instructions for dessert gel strength testing are given.


Sign in / Sign up

Export Citation Format

Share Document