scholarly journals Eye-movement replay supports episodic remembering

Author(s):  
Roger Johansson ◽  
Marcus Nyström ◽  
Richard Dewhurst ◽  
Mikael Johansson

Abstract When we bring to mind something we have seen before, our eyes spontaneously reproduce a pattern strikingly similar to that made during the original encounter. Eye-movements can then serve the opposite purpose to acquiring new visual information; they can serve as self-generated cues, pointing to memories already stored. By isolating separable properties within the closely bound chain of where and when we look, we demonstrate that specific components of dynamically reinstated eye-movement sequences, facilitate different aspects of episodic remembering. We also show that the fidelity with which a series of connected eye-movements from initial encoding is reproduced during subsequent retrieval, predicts the quality of the recalled memory. Our findings indicate that eye movements are “replayed” to assemble visuospatial relations as we remember. Distinct dimensions of these scanpaths differentially contribute depending on the goal-relevant memory.

2019 ◽  
Author(s):  
Michelle Ramey ◽  
Andrew P. Yonelinas ◽  
John M. Henderson

A hotly debated question is whether memory influences attention through conscious or unconscious processes. To address this controversy, we measured eye movements while participants searched repeated real-world scenes for embedded targets, and we assessed memory for each scene using confidence-based methods to isolate different states of subjective memory awareness. We found that memory-informed eye movements during visual search were predicted both by conscious recollection, which led to a highly precise first eye movement toward the remembered location, and by unconscious memory, which increased search efficiency by gradually directing the eyes toward the target throughout the search trial. In contrast, these eye movement measures were not influenced by familiarity-based memory (i.e., changes in subjective reports of memory strength). The results indicate that conscious recollection and unconscious memory can each play distinct and complementary roles in guiding attention to facilitate efficient extraction of visual information.


2005 ◽  
Vol 15 (3) ◽  
pp. 149-160
Author(s):  
Jelte E. Bos ◽  
Jan van Erp ◽  
Eric L. Groen ◽  
Hendrik-Jan van Veen

This paper shows that tactile stimulation can override vestibular information regarding spinning sensations and eye movements. However, we conclude that the current data do not support the hypothesis that tactile stimulation controls eye movements directly. To this end, twenty-four subjects were passively disoriented by an abrupt stop after an increase in yaw velocity, about an Earth vertical axis, up to 120°/s. Immediately thereafter, they had to actively maintain a stationary position despite a disturbance signal. Subjects wore a tactile display vest with 48 miniature vibrators, applied in different combinations with visual and vestibular stimuli. Their performance was quantified by RMS body velocity during self-control. Fast eye movement phases were analyzed by counting samples exceeding a velocity limit, slow phases by a novel method applying a first order model. Without tactile and visual information, subjects returned to a previous level of angular motion. Tactile stimulation decreased RMS self velocity considerably, though less than vision. No differences were observed between conditions in which the vest was active during the recovery phase only or during the disorienting phase as well. All effects of tactile stimulation found on the eye movement parameters could be explained by the vestibular stimulus.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6038 ◽  
Author(s):  
Henry Railo ◽  
Henri Olkoniemi ◽  
Enni Eeronheimo ◽  
Oona Pääkkönen ◽  
Juho Joutsa ◽  
...  

Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements.


2018 ◽  
Author(s):  
Henry Railo ◽  
Henri Olkoniemi ◽  
Enni Eeronheimo ◽  
Oona Pääkkonen ◽  
Juho Joutsa ◽  
...  

Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N=14), and age-matched healthy control participants (N=14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade towards the second target, especially when eye movements were made towards the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades towards the second target. Our results provide tentative evidence that the motor deficits in PD may be partly accounted by deficits in internal monitoring of movements.


Author(s):  
Barry Dauphin ◽  
Harold H. Greene

This study represents the beginning of a systematic effort to utilize eye-movement responses in order to better understand individuals’ processing strategies during the Rorschach Inkblot Method (RIM). Eye movements reflect moment-by-moment spatial and temporal processing of visual information and represent a useful approach for studying the RIM with potential clinical implications. Thirteen participants responded to the Rorschach while eye movements were being monitored. Several eye-movement indices were studied which reflect different aspects of information processing. Differences among the Rorschach cards were found for several eye-movement indices. For example, fixation durations were longer during a second viewing of the cards than during the first. This is consonant with an attempt to acquire conceptually difficult information, as participants were reinterpreting the cards. Results are discussed in terms of visual information processing strategies during the RIM and the potential usefulness of eye movements as a response measure to the RIM.


Perception ◽  
1983 ◽  
Vol 12 (1) ◽  
pp. 35-41
Author(s):  
John M Findlay ◽  
Lucia Zanuttini

The effects of visual movement on saccadic eye movement have been examined. In a classic apparent-movement demonstration with two successively exposed line-segment targets the quality of the movement is dependent on the relative orientation of the line segments. If saccadic eye movements are elicited between the targets in this situation, the configuration leading to optimal apparent movement also leads to the shortest-latency saccades. When a single line segment is succeeded by two line segments flanking it on opposite sides, and if one of these has the same orientation as the initial one and the other a different orientation, then apparent motion is seen between the two lines with the same orientation. However, the direction of saccades elicited in this configuration is not influenced by the relative orientations of the line segments. The two results together suggest that the effect of visual movement on saccadic eye movement is nonspecific.


2008 ◽  
Vol 100 (5) ◽  
pp. 2507-2514 ◽  
Author(s):  
Aidan A. Thompson ◽  
Denise Y. P. Henriques

Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qingshuo Meng ◽  
Xinrong Tan ◽  
Chengyong Jiang ◽  
Yanyu Xiong ◽  
Biao Yan ◽  
...  

Eye movement is not only for adjusting the visual field and maintaining the stability of visual information on the retina, but also provides an external manifestation of the cognitive status of the brain. Recent studies showed similarity in eye movement patterns between wakefulness and rapid eye movement (REM) sleep, indicating that the brain status of REM sleep likely resembles that of awake status. REM sleep in humans could be divided into phasic REM and tonic REM sleep according to the difference in eye movement frequencies. Mice are the most commonly used animal model for studying neuronal and molecular mechanisms underlying sleep. However, there was a lack of details for eye movement patterns during REM sleep, hence it remains unknown whether REM sleep can be further divided into different stages in mice. Here we developed a device combining electroencephalogram (EEG), electromyogram (EMG) as well as eye movements recording in mice to study the eye movement patterns during sleep. We implanted a magnet beneath the conjunctiva of eye and tracked eye movements using a magnetic sensor. The magnetic signals showed strong correlation with video-oculography in head-fixed mice, indicating that the magnetic signals reflect the direction and magnitude of eye movement. We also found that the magnet implanted beneath the conjunctiva exhibited good biocompatibility. Finally, we examined eye movement in sleep–wake cycle, and discriminated tonic REM and phasic REM according to the frequency of eye movements, finding that compared to tonic REM, phasic REM exhibited higher oscillation power at 0.50 Hz, and lower oscillation power at 1.50–7.25 Hz and 9.50–12.00 Hz. Our device allowed to simultaneously record EEG, EMG, and eye movements during sleep and wakefulness, providing a convenient and high temporal-spatial resolution tool for studying eye movements in sleep and other researches in mice.


2017 ◽  
Vol 2 (6) ◽  
pp. 133
Author(s):  
Noor Halilah Buari ◽  
Muhammad Zahir Nur-Zahirah

As a person read, the eyes move to extract information from the printed text. Reading became disturbed when obstructed by the scotoma. The effect of reading and eye movement were investigated between different locations of simulated central vision scotoma. The time to read the text and the eye movements were recorded and tracked among eleven participants. The reading speed showed a significant difference at different locations of central scotoma simulation. The presence of central scotoma affects the quality of reading as the eye moved slowly during reading in order to comprehend the text.


2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


Sign in / Sign up

Export Citation Format

Share Document