scholarly journals Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics

2020 ◽  
Author(s):  
Rebecca M Varney ◽  
Bastian Brenzinger ◽  
Manuel António E. Malaquias ◽  
Christopher P. Meyer ◽  
Michael Schrödl ◽  
...  

Abstract Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs.” Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs.” Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference analysis with the CAT+GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy sister to all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades.Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT+GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rebecca M. Varney ◽  
Bastian Brenzinger ◽  
Manuel António E. Malaquias ◽  
Christopher P. Meyer ◽  
Michael Schrödl ◽  
...  

Abstract Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs”. Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs”. Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades. Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT + GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.


2020 ◽  
Author(s):  
Rebecca M Varney ◽  
Bastian Brenzinger ◽  
Manuel António E. Malaquias ◽  
Christopher P. Meyer ◽  
Michael Schrödl ◽  
...  

Abstract Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs.” Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs.” Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT+GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades.Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT+GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.


2020 ◽  
Author(s):  
Rebecca M Varney ◽  
Bastian Brenzinger ◽  
Manuel António E. Malaquias ◽  
Christopher P. Meyer ◽  
Michael Schrödl ◽  
...  

Abstract ● Background: Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs.” Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia.● Results: To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs.” Phylogenetic analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference analysis with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny than maximum likelihood analyses using site-homogeneous models. Interestingly, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades.● Conclusions: Mitochondrial genomes provide support for shallow nodes within Heterobranchia, but despite a relatively conserved gene order and recovery of a topology largely consistent with the current understanding of heterobranch phylogeny, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for resolving deeper splits within this clade.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew N. George ◽  
Karla F. Leavens ◽  
Paul Gadue

A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


2017 ◽  
Vol 106 ◽  
pp. 209-216 ◽  
Author(s):  
Marwa Al Arab ◽  
Christian Höner zu Siederdissen ◽  
Kifah Tout ◽  
Abdullah H. Sahyoun ◽  
Peter F. Stadler ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Monet Stevenson ◽  
Narendra Narendra Banerjee ◽  
Narendra Banerjee ◽  
Kuldeep Rawat ◽  
Lin Chen ◽  
...  

Considering the prevalence of prostate cancer all over the world, it is desired to have tools, technologies, and biomarkers which help in early detection of the disease and discriminate different races and ethnic groups. Genetic information from the single gene analysis and genome-wide association studies have identified few biomarkers, however, the drivers of prostate cancer remain unknown in the majority of prostate cancer patients. In those cases where genetic association has been identified, the genes confer only a modest risk of this cancer, hence, making them less relevant for risk counseling and disease management. There is a need for additional biomarkers for diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146a (miR-146a) which may serve as a diagnostic and prognostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. Reduced expression of miR-146a was observed in African American tumor tissues compared to those from European Whites This report provides a novel insight into understanding the prostate carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document