scholarly journals Reparative Effect of Mesenchymal Stromal Cells on Endothelial Cells after Hypoxic and Inflammatory Injury

2020 ◽  
Author(s):  
Jesus Maria Sierra-Parraga ◽  
Ana Merino ◽  
Marco Eijken ◽  
Henri Leuvenink ◽  
Rutger J. Ploeg ◽  
...  

Abstract Background The renal endothelium is a prime target for ischemia reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved. Methods Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-a treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome deficient MSC. Results MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI.

2020 ◽  
Author(s):  
Jesus Maria Sierra-Parraga ◽  
Ana Merino ◽  
Marco Eijken ◽  
Henri Leuvenink ◽  
Rutger J. Ploeg ◽  
...  

Abstract Background: The renal endothelium is a prime target for ischemia reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved.Methods: Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-a treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome deficient MSC. Results: MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions: These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Di Gu ◽  
Xiangyu Zou ◽  
Guanqun Ju ◽  
Guangyuan Zhang ◽  
Erdun Bao ◽  
...  

Background. The immoderation of mitochondrial fission is one of the main contributors in ischemia reperfusion injury (IRI) and mesenchymal stromal cells (MSCs) derived extracellular vesicles have been regarded as a potential therapy method. Here, we hypothesized that extracellular vesicles (EVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) ameliorate acute renal IRI by inhibiting mitochondrial fission through miR-30b/c/d.Methods. EVs isolated from the condition medium of MCS were injected intravenously in rats immediately after monolateral nephrectomy and renal pedicle occlusion for 45 minutes. Animals were sacrificed at 24 h after reperfusion and samples were collected. MitoTracker Red staining was used to see the morphology of the mitochondria. The expression of DRP1 was measured by western blot. miR-30 in EVs and rat tubular epithelial cells was assessed by qRT-PCR. Apoptosis pathway was identified by immunostaining.Results. We found that the expression of miR-30 in injured kidney tissues was declined and mitochondrial dynamics turned to fission. But they were both restored in EVs group in parallel with reduced cell apoptosis. What is more, when the miR-30 antagomirs were used to reduce the miRNA levels, all the related effects of EVs reduced remarkably.Conclusion. A single administration of hWJMSC-EVs could protect the kidney from IRI by inhibition of mitochondrial fission via miR-30.


2002 ◽  
Vol 283 (1) ◽  
pp. C93-C102 ◽  
Author(s):  
C. K. Domingos Ng ◽  
Shailesh S. Deshpande ◽  
Kaikobad Irani ◽  
B. Rita Alevriadou

Production of reactive oxygen species (ROS) by ischemic tissue after ischemia-reperfusion (I/RP) is an important factor that contributes to tissue injury. The small GTPase Rac1 mediates the oxidative burst, and ROS act on signaling pathways involved in expression of inflammatory genes. Because there is evidence implicating monocytes in the pathogenesis of I/RP injury, our objective was to determine the molecular mechanisms that regulate adhesive interactions between monocytes and hypoxia-reoxygenation (H/RO)-exposed cultured endothelial cells (ECs). When U937 cells were perfused over human umbilical vein ECs at 1 dyn/cm2, H (1 h at 1% O2)/RO (13 h) significantly increased the fluxes of rolling and stably adherent U937 cells. Either EC treatment with the antioxidant pyrrolidine dithiocarbamate (PDTC) or infection with AdRac1N17, which results in expression of the dominant-negative form of Rac1, abolished H/RO-induced ROS production, attenuated rolling, and abolished stable adhesion of U937 cells to H/RO-exposed ECs. Infection with AdRac1N17 also abolished H/RO-induced upregulation of vascular cell adhesion molecule (VCAM)-1. In turn, blocking VCAM-1 abolished U937 cell stable adhesion and slightly increased rolling. We concluded that the Rac1-dependent ROS partially regulate rolling and exclusively regulate stable adhesion of monocytic cells to ECs after H/RO and that stable adhesion, but not rolling, is mediated by ROS-induced expression of VCAM-1.


2020 ◽  
Author(s):  
Tian Zhang ◽  
Dan Xu ◽  
Fengyang Li ◽  
Rui Liu ◽  
Kai Hou ◽  
...  

Abstract Background: Indobufen is a new generation of antiplatelet agents and has been shown to have antithrombotic effects in animal models. However, the efficacy of Indobufen on cerebral ischemia/reperfusion (I/R) injury and its mechanisms remain to be investigated. Methods: In this study, the efficacy of Indobufen with both pre- (5days) and post- (15days) treatment on rats suffering middle cerebral artery occlusion/reperfusion (MCAO/R, 2h of ischemia and 24h/15days of reperfusion) was investigated. Furthermore, human umbilical vein endothelial cells (HUVECs) were cultured and underwent oxygen glucose deprivation/reoxygenation (OGD/R) injury for in vitro studies. Relationship between Indobufen and pyroptosis associated NF-κB/Caspase-1/GSDMD pathway was preliminarily discussed. Results: The pharmacodynamic tests revealed that Indobufen ameliorated I/R injury by decreasing the platelet aggregation, infarct size, brain edema and neurologic impairment in rats and rescuing cell apoptosis/pyroptosis in HUVECs. The underlying mechanisms were probably related to pyroptosis suppression by platelet inhibition induced regulation of the NF-κB/Caspase-1/GSDMD pathway.Conclusion: Overall, these studies indicates that Indobufen exerts protective and therapeutic effects against I/R injury by pyroptosis suppression via downregulating NF-κB/Caspase-1/GSDMD pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Merino ◽  
Marta Sablik ◽  
Sander S. Korevaar ◽  
Carmen López-Iglesias ◽  
Maitane Ortiz-Virumbrales ◽  
...  

Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as cardiovascular diseases, autoimmune diseases, and contributes to alloimmune responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the extracellular vesicles (EV) released by them are widely studied as regenerative therapy for the endothelium. However, for therapeutic application, the manipulation of living MSC and large-scale production of EV are major challenges. Membrane particles (MP) generated from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles artificially generated from the membranes of MSC and possess some of the therapeutic properties of MSC. In the present study we investigated whether MP conserve the beneficial MSC effects on endothelial cell repair processes under inflammatory conditions. MP were generated by hypotonic shock and extrusion of MSC membranes. The average size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells (HUVEC) were tested in a model of inflammation induced by TNFα. Confocal microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture system of monocytes and TNFα activated HUVEC, MP did not affect monocyte adherence to HUVEC, but reduced the transmigration of monocytes across the endothelial layer from 138 ± 61 monocytes per microscopic field in TNFα activated HUVEC to 61 ± 45 monocytes. TNFα stimulation induced a 2-fold increase in the permeability of the HUVEC monolayer measured by the translocation of FITC-dextran to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly decreased endothelial permeability (1.5-fold) respect to TNFα Stimulated HUVEC. Finally, MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by stimulating the formation of angiogenic structures, such as percentage of covered area, total tube length, total branching points, total loops. In conclusion, MP show regenerative effects on endothelial cells, opening a new avenue for treatment of vascular diseases where inflammatory processes damage the endothelium.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hataiwan Kunkanjanawan ◽  
Tanut Kunkanjanawan ◽  
Veerapol Khemarangsan ◽  
Rungrueang Yodsheewan ◽  
Kasem Theerakittayakorn ◽  
...  

Coimplantation of endothelial cells (ECs) and mesenchymal stromal cells (MSCs) into the transplantation site could be a feasible option to achieve a sufficient level of graft-host vascularization. To find a suitable source of tissue that provides a large number of high-quality ECs and MSCs suited for future clinical application, we developed a simplified xeno-free strategy for isolation of human umbilical vein endothelial cells (HUVECs) and Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) from the same umbilical cord. We also assessed whether the coculture of HUVECs and WJ-MSCs derived from the same umbilical cord (autogenic cell source) or from different umbilical cords (allogenic cell sources) had an impact on in vitro angiogenic capacity. We found that HUVECs grown in 5 ng/ml epidermal growth factor (EGF) supplemented xeno-free condition showed higher proliferation potential compared to other conditions. HUVECs and WJ-MSCs obtained from this technic show an endothelial lineage (CD31 and von Willebrand factor) and MSC (CD73, CD90, and CD105) immunophenotype characteristic with high purity, respectively. It was also found that only the coculture of HUVEC/WJ-MSC, but not HUVEC or WJ-MSC mono-culture, provides a positive effect on vessel-like structure (VLS) formation, in vitro. Further investigations are needed to clarify the pros and cons of using autogenic or allogenic source of EC/MSC in tissue engineering applications. To the best of our knowledge, this study offers a simple, but reliable, xeno-free strategy to establish ECs and MSCs from the same umbilical cord, a new opportunity to facilitate the development of personal cell-based therapy.


Sign in / Sign up

Export Citation Format

Share Document