scholarly journals Motor Torque Estimation and Security Control for Electric Vehicles (EV) Based on Parameters Feature Extraction

Author(s):  
Peng Zhiyuan ◽  
DU Changhong ◽  
ZHOU Anjian ◽  
LIU Li ◽  
CHEN Yang ◽  
...  

Abstract Motor as well as its controller plays an important role in driving electric vehicle. As sole power device, it is closely related with actual torque accuracy to make sure security during EV driving. Due to complex controlling system for motor, there are some random failures of hardware and software which can bring a series of unexpected risks for EV acceleration or deceleration. A novel method based on motor parameters feature is proposed to estimate motor torque according to torque estimation scheme based on parameters feature extraction for three-phase of volts and currents. Additionally, Quality Factor (\(QF\)) and confidence coefficient are also adopted to judge whether motor estimation torque is reasonable or not and motor failure torque is limited to prohibit output by setting fault flag in controller software. Finally, test bench is built to estimate torque accuracy compared with actual test value and verify security control strategy at the state of failure modes, test results show that estimation torque accuracy is within ± 5Nm which is compared with actual test torque and motor system can effectively come into security state from failure state by security control strategy designed in this paper.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1720
Author(s):  
Hashim Raza Khan ◽  
Majida Kazmi ◽  
Haris Bin Ashraf ◽  
Muhammad Hashir Bin Khalid ◽  
Abul Hasan ◽  
...  

The usage of BLDC motors in the low-power range is increasing rapidly in home appliances such as ceiling fans. This has necessitated the development of reliable, compact and efficient AC-DC power supplies for motor drive circuitry. This paper presents a power supply design consisting of an AC-DC isolated PFC Cuk converter with integrated magnetics that supplies a single-shunt voltage source inverter for the sensorless drive of the BLDC fan motor. The proposed power supply design is comprised of an integrated magnetics structure in which the two inductors and the transformer windings share the same core. The zero input and output ripple current conditions have been derived from the reluctance model of the magnetic assembly. Smooth operation of the motor by minimizing the motor torque ripples is evident from the results. The Cuk converter operates in continuous conduction mode (CCM), employing the current multiplier method. The CCM-based current multiplier control loop ensures a near-unity power factor as well as low total harmonic distortion in the supply current. The current loop also provides over-current protection, enhancing reliability of the system. Moreover, the speed of the BLDC motor is controlled by the field oriented control (FOC) algorithm, which enables direct operation with alternate energy sources such as batteries and solar photovoltaic panels. The performance of the proposed supply is validated: motor torque ripple is reduced to only 2.14% while maintaining 0.999 power factor and only 4.72% THD at full load. Failure modes analysis has also been performed through software simulations, using the PLECS simulation environment. Due to the reliable power supply design with low ripples, it is well suited for low-power BLDC motors in home appliances and small power tools, in addition to ceiling fans.


Author(s):  
Enrico Corti ◽  
Davide Moro

In recent years engine control development focused the attention on torque-based models, that allow improving driveability and implementing traction control strategies. The design of such a torque-based engine control strategy requires the knowledge of the torque produce by the engine, which depends on fuel injection time, spark advance, throttle opening, EGR command, … In the actual engine control strategies this is mainly done by means of static maps stored in the ECU memory. The real engine torque production under every operating condition can be evaluated by means of the in-cylinder pressure estimation, thus allowing a torque based closed loop control strategy. Many approaches are present in the literature showing the possibility of on-board estimating the actual torque produced by the engine not simply by using static maps, but estimating it through other measured signals. Most of the methodologies that do not require a specific sensor placed on the engine are based either on the engine speed fluctuations (measured by a pick-up facing the flywheel teeth) or on the engine block vibrations (measured by the knock sensor), performing better for engines with a low number of cylinders. The paper presents an original methodology based on the instantaneous engine speed fluctuations, that has been usefully applied to engines with higher number of cylinders. The methodology is based on the observation of the speed fluctuations in a crankshaft window inside the expansion stroke and on the hypothesis that there exists a strong correlation between these engine speed fluctuations and pressure inside the selected cylinder. This relationship has been characterized using Frequency Response Functions (FRF) for each steady-state engine operating condition. In the following the FRFs have been used to perform in-cylinder pressure and then indicated torque estimation under every operating condition, and a specific signal processing algorithm has been developed in order to apply the procedure during speed and load engine transients. The experimental tests have been conducted mounting a six-cylinder turbo-charged spark-ignited engine in a test cell. The application on-board a vehicle of the same methodology seems to be feasible due to the quickness of the algorithm employed and the presence on-board of all the sensors required for the implementation.


2012 ◽  
Vol 188 ◽  
pp. 292-299 ◽  
Author(s):  
Zai Min Zhong ◽  
Xue Ping Chen ◽  
Guo Ling Kong ◽  
Xin Bo Chen

Control strategy and stability of actuator are highly important for the performance of Automated Mechanical Transmission (AMT). Targeting an electric AMT actuator, this paper sets up a Hardware-in-the-loop (HIL) test rig which is composed of TCU, AMT actuator, dSPACE Simulator, real-time simulation computer and AMT actuator loading simulation electric servo-system. In order to verify actuator and control strategy, the paper carries out several tests in typical driving conditions. it also analyses the shift performance and gives advices on further improvement. This paper lists several failure modes and extreme conditions of AMT. Some of them will be modeled in Simulink, in order to optimize AMT actuator and control strategy while ensuring enough driving ability when AMT is failed or vehicle is driven in extreme conditions.


2021 ◽  
Author(s):  
Zhaoyang Cuan ◽  
Dawei Ding ◽  
Heng Wang

Abstract This paper is concerned with the event-based control problem for nonlinear cyber-physical systems (CPSs) with state constraints. A novel security control strategy consisting of a self-triggered mechanism is developed to decrease the network communication loads to the most extent on the basis of ensuring system safety and stability. The maximum capability of the designed self-triggered mechanism to resist denial-of-service (DoS) attacks occurring in controller-actuator (C-A) and sensor-controller (S-C) channels synchronously is also analyzed. In particular, we prove that the security control strategy guarantees the system safety and stability without resulting in Zeno behavior. Finally, a numerical example is provided to demonstrate the prominent effectiveness and the advantages over the existing results.


Author(s):  
Anthony J. Chirico ◽  
Jason R. Kolodziej

This research investigates a novel data-driven approach to condition monitoring of electromechanical actuators (EMAs) consisting of feature extraction and fault classification. The approach is able to accommodate time-varying loads and speeds since EMAs typically operate under nonsteady conditions. The feature extraction process exposes fault frequencies in signal data that are synchronous with motor position through a series of signal processing techniques. A resulting reduced dimension feature is then used to determine the condition with a trained Bayesian classifier. The approach is based on signal analysis in the frequency domain of inherent EMA signals and accelerometers. For this work, two common failure modes, bearing and ball screw faults, are seeded on a MOOG MaxForce EMA. The EMA is then loaded using active and passive load cells with measurements collected via a dSPACE data acquisition and control system. Typical position commands and loads are utilized to simulate “real-world” inputs and disturbances and laboratory results show that actuator condition can be determined over a range of inputs. Although the process is developed for EMAs, it can be used generically on other rotating machine applications as a Health and Usage Management System (HUMS) tool.


2014 ◽  
Vol 599-601 ◽  
pp. 1225-1228
Author(s):  
An Liu ◽  
Yi Du ◽  
Jia Man Ding

Gears typical failure modes and fault diagnosis methods were summarized, and their characteristics and deficiency were contrasted. As almost all method need feature extraction before information fusion, the rich information in original signals were lost in this process. Another difficult problems of information fusion is the the space-time registration. The probability box theory can be a new method to solve the above two problems. The gears fault signal modeling method based on probability box theory were then proposed. Finally the prospects and study directions of this method’s applications in gear box fault diagnosis were proposed.


Sign in / Sign up

Export Citation Format

Share Document