scholarly journals Experimental and DFT studies on the structural and optical properties of chitosan/polyvinyle pyrrolidone/ZnS nano composites

Author(s):  
A. M. Abdelghany ◽  
M.A. Aboelwafa ◽  
M.S. Meikhail ◽  
A Oraby

Abstract Chitosan/ Polyvinyl pyrrolidone (CS/PVP) semi-natural polymeric blend involving gradient concentrations of ZnS nanoparticles (ZnS-NPS) was prepared via a simple casting method. In conjunction with computational density functional theory approaches (DFT), prepared samples were characterized by UV/Vis spectrophotometric studies and Fourier transform infrared measurements (FTIR) to take into account a detailed description of the different reaction mechanisms within the polymeric matrices. To conduct all calculations, the Becke three-parameter hybrid functional (B3LYP) correlation function used with the electron core potential basis set LANL2DZ was used. A detailed study for different reaction regimes was studied and reaction via Oxygen was observed to be preferred and compatible with that of the experimental data. UV/vis. Absorption experimental data were used to calculate the optical energy gap using the Mott-Davis equation and observed data was found to follow an indirect transition route.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 163
Author(s):  
Nguyen Van Trang ◽  
Tran Ngoc Dung ◽  
Ngo Tuan Cuong ◽  
Le Thi Hong Hai ◽  
Daniel Escudero ◽  
...  

A class of D-π-A compounds that can be used as dyes for applications in polymer solar cells has theoretically been designed and studied, on the basis of the dyes recently shown by experiment to have the highest power conversion efficiency (PCE), namely the poly[4,8-bis(5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTS-TZNT) and poly[4,8-bis(4-fluoro-5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTSF-TZNT) substances. Electronic structure theory computations were carried out with density functional theory and time-dependent density functional theory methods in conjunction with the 6−311G (d, p) basis set. The PBDTS donor and the TZNT (naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole)) acceptor components were established from the original substances upon replacement of long alkyl groups within the thiophene and azole rings with methyl groups. In particular, the effects of several π-spacers were investigated. The calculated results confirmed that dithieno[3,2-b:2′,3′-d] silole (DTS) acts as an excellent π-linker, even better than the thiophene bridge in the original substances in terms of well-known criteria. Indeed, a PBDTS-DTS-TZNT combination forms a D-π-A substance that has a flatter structure, more rigidity in going from the neutral to the cationic form, and a better conjugation than the original compounds. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of such a D-π-A substance becomes smaller and its absorption spectrum is more intense and red-shifted, which enhances the intramolecular charge transfer and makes it a promising candidate to attain higher PCEs.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350210 ◽  
Author(s):  
IGOR K. PETRUSHENKO ◽  
NIKOLAY A. IVANOV

This paper presents a systematical analysis of the structure and electronic properties of armchair single-walled carbon nanotubes (SWCNTs) as well as single-walled silicon carbide nanotubes ( SiCNTs ) by using density functional theory. The geometries of all species were optimized at the B3LYP level of theory using the SVP basis set. The different behavior of C – C bonds "parallel" and "perpendicular" to the nanotube axis has been found. The HOMO–LUMO energy gap, ionization potential, electron affinity, electronegativity and hardness of studied tubes were compared. The influence of both SWCNTs and SiCNTs lengths on their electronic properties has been analyzed.


2014 ◽  
Vol 92 (9) ◽  
pp. 876-887 ◽  
Author(s):  
Seda Sagdinc ◽  
Yesim Kara ◽  
Filiz Kayadibi

Ab initio Hartree–Fock (HF) and Density Functional Theory (DFT) B3LYP methods with the 6-311G(d,p) basis set were applied to the three 11-thiocyanatoundecanoic acid phenylamide derivatives as corrosion inhibitors. Inhibition efficiency obtained experimentally followed the following order: N-(4-methoxyphenyl)-11-thiocyanatoundecanamide (N3MPTUA) > N-phenyl-11-thiocyanatoundecanamide (NPTUA) > N-(3-nitrophenyl)-11-thiocyanatoundecanamide (N3NPTUA). The molecular parameters most relevant to their potential action as corrosion inhibitors have been calculated in the neutral and protonated forms: EHOMO, ELUMO, energy gap (ΔE), dipole moment (μD), electronegativity (χ), global hardness (η), and the fraction of electrons transferred from the inhibitor molecule to the metallic atom (ΔN). The results of most of the global reactivity descriptors show that the experimental and theoretical studies agree well, and confirm that N3MPTUA is a better inhibitor than NPTUA or N3NPTUA. In addition, the local reactivity, analyzed through Fukui functions, show that the oxygen and nitrogen atoms will be the main adsorption sites.


2021 ◽  
Vol 6 (3) ◽  
pp. 107-115
Author(s):  
Fares A. Yasseen ◽  
Faeq A. Al-Temimei

In the present work, geometries, electronic structures, photovoltaic and optical properties have been carried out on a series of structures formation of phthalocyanine and Titanylphthalocyanine dyes, which are replaced by several subgroup. A density functional theory (DFT) approach together with hybrid function (B3LYP) at SDD basis set was used for the ground state properties in the gas phase. The time-dependent density functional theory (TD-DFT)/ B3LYP was used to investigate the excitation properties of new dyes and analyzed the trends in their optical and redox characteristics. Theoretical principles of HOMO and LUMO energy levels of dyes is requisite in analyzing organic solar cells, thus, HOMO, LUMO levels, open circuit voltage, energy gap, light harvestings efficiency, electron regeneration and electron injection have been calculated and discussed. The outcome of the efficiency, the considered dyes explain absorption energy and wavelength properties that correspond to the solar spectrum requirements. According to results, all the considered materials have a good property and possibility of electron injection procedure from the dyes to conduction band of TiO2, PC60BM or PC60BM. As a result, the molecular changes affect the electronic properties of dye molecules for solar cells. Also, a study of new dyes sensitizers showed that designed materials will be excellent sensitizers. Theoretical designing will prae a way for experimentalists to synthesize the efficient sensitizers for solar cells clearer.


2018 ◽  
Vol 20 (28) ◽  
pp. 18907-18911 ◽  
Author(s):  
Ángel Morales-García ◽  
Rosendo Valero ◽  
Francesc Illas

Suitable and practical way to estimate Ogap of TiO2 nanoparticles containing up to thousands of atoms from computationally affordable relativistic all-electron calculations with a numerical atomic centered orbital basis set.


Author(s):  
Shanggeng Li ◽  
Fanghua Zhu ◽  
Yawen Zhou ◽  
Jiaming Hu ◽  
Jing Li ◽  
...  

First-principles exploration is very important to molecular design. In this study, geometric structure, intramolecular charge transfer (ICT), energy levels, polar moment, and ultraviolet–visible (UV–Vis) spectroscopy of eight novel and different alkynyl bridged thiophene modified coumarin nonlinear optical molecules with [Formula: see text]-[Formula: see text]-[Formula: see text] and [Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text]-[Formula: see text] structures had been studied by density-functional theory (DFT) calculations within B3LYP hybrid functional using 6-31 [Formula: see text], [Formula: see text] Gaussian type molecular-orbital basis set. This has guiding significance for the design of nonlinear optical molecules and the development of coumarin-based photoelectric molecules.


2021 ◽  
pp. 174751982199451
Author(s):  
Juma Mzume Juma ◽  
Said AH Vuai

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap, and thermodynamic properties of molecular dyes fluorescein (FS), fluorescein attached with methoxy (FSO), fluorescein attached with amine (FSA), fluorescein attached with methane (FSM), fluorescein attached with ethene (FSE), and fluorescein attached with thiophene (FST) using the hybrid functional B3LYP and 6-311G basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased which is important for easy transfer of electron from donating to the accepting group. For all dyes, highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to semiconductors and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the molecular dye attached to thiophene has the highest ionization potential. Meanwhile, a donating group with increased conjugation results in low electron affinity.


2016 ◽  
Vol 16 (4) ◽  
pp. 3447-3456
Author(s):  
Prabath Wanaguru ◽  
Asok K Ray ◽  
Qiming Zhang

A systematic, hybrid density functional theory study of interaction between SiGe nanotubes (SiGeNTs) and X (X = H, O, H2 and O2) have been performed using the hybrid functional B3LYP and an all electron 3-21G* basis set implemented in GAUSSIAN 09 suite of software. All possible internal and external adsorption sites were considered, and it was found that H prefers to move onto top of an atom site while O prefers to incorporate into NT wall by breaking the bonds. Adsorption energies for H is ∼2.0 eV and for O it is ∼5.0 eV. Controlled adsorption of atomic H and several molecular O give rises to defect density states in the frontier orbital region. H rich adsorptions predict the difference between highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy increase while O rich adsorptions predict the decrease in HOMO-LUMO energy gap. O and O2 adsorptions predict definite ionic bonding character while H atomic adsorptions predict covalent bonding. H2 is very neutral towards the adsorption into SiGeNTs and clearly shows the physisorption adsorption. Considering the all adsorptions, the adsorptions happened within the Si vicinity of the SiGeNT shows the most stable and preferred adsorption region.


Sign in / Sign up

Export Citation Format

Share Document