scholarly journals Simulating a High-speed Abrasive Particle Impacting on a Tensile Block Using SPH-FEM

Author(s):  
Yanjie Liu ◽  
Yue Zhao ◽  
Kenji Yoshigoe ◽  
Shijin Zhang ◽  
Ming Chen

Abstract In recent years, more and more researches have been carried out on the erosion mechanism of abrasive particles on target materials in the abrasive waterjet cutting process. However, the effect of material property factors on the target erosion damage is rarely studied systematically. In this work, a 3D smoothed particle hydrodynamics-finite elements model is established for the simulation. The controlled variable method is used to study how each material property factor affects the erosion process of single abrasive particle and to find out the key material property factors of Al6061-T6 and Ti-6Al-4V. The influence of the interaction of the key material property factors on the target erosion damage is further evaluated using the orthogonal test method.

2019 ◽  
Vol 17 (09) ◽  
pp. 1950075
Author(s):  
Long Feng ◽  
Xiangwei Dong ◽  
Zengliang Li ◽  
Guirong Liu ◽  
Zhaocheng Sun

Abrasive waterjet is widely used for mass-cutting during coal mining or other mining process. Such a cutting process involves complex fluid–solid coupling, which require an effective method capable of simulating the large deformation and spalling of materials. This paper uses method of smoothed particle hydrodynamics (SPH) to establish a model to simulate the cutting process of coal seams by abrasive waterjets. In our SPH model, both fluid and solid are discretized with SPH particles. These particles are different in physical properties representing waterjet, abrasive particles and target materials. The waterjet is treated as viscous fluid and the coal (as a target material) is modeled as a brittle solid material. All these SPH particles of various medium are governed by the Navier–Stokes (NS) equations. Our established SPH model is then applied to study the efficiency of coal cutting using different waterjet formations. The results show that the cutting efficiency of the abrasive waterjet is higher than that of the standard waterjet. Our SPH model is capable of reveal the detailed interactions of the micro waterjet abrasive particles with the particles on the surface of coal. It enables the study on the mechanisms of coal seam breaking and cutting processes. It provides an effective computational tool for improving the efficiency of coal mining and of the development of new techniques for coal mining.


Author(s):  
Alexander L. Brown

Transportation accidents and the subsequent fire present a concern. Particularly energetic accidents like an aircraft impact or a high speed highway accident can be quite violent. We would like to develop and maintain a capability at Sandia National Laboratories to model these very challenging events. We have identified Smoothed Particle Hydrodynamics (SPH) as a good method to employ for the impact dynamics of the fluid for severe impacts. SPH is capable of modeling viscous and inertial effects for these impacts for short times. We have also identified our fire code Lagrangian/Eulerian (L/E) particle capability as an adequate method for fuel transport and spray modeling. A fire code can also model the subsequent fire for a fuel impact. Surface deposition of the liquid may also be acceptably predicted with the same code. These two methods (SPH and L/E) typically employ complimentary length and timescales for the calculation, and are potentially suited for coupling given adequate attention to relevant details. Length and timescale interactions are important considerations when joining the two capabilities. Additionally, there are physical model inadequacy considerations that contribute to the accuracy of the methodology. These models and methods are presented and evaluated. Some of these concerns are detailed for a verification type scenario used to show the work in progress of this coupling capability. The importance of validation methods and their appropriate application to the genesis of this class of predictive tool are also discussed.


2013 ◽  
Vol 7 (6) ◽  
pp. 614-620 ◽  
Author(s):  
Jingsi Wang ◽  
◽  
Keita Shimada ◽  
Masayoshi Mizutani ◽  
Tsunemoto Kuriyagawa

Hammering action plays a primary role in material removal in ultrasonic machining (USM). In the present study, Smoothed Particle Hydrodynamics (SPH) is used to simulate the hammering action of a single silicon carbide abrasive particle on a float glass workpiece, and the implications for crack initiation and propagation on the workpiece are discussed in detail. The adequacy of the SPH model is verified through an experiment that utilizes a stationary ultrasonic drilling machine. It is shown that the distribution and size of the cracks on the sample workpiece are well in agreement with the simulation results. The current study presents a new way to understand the material removal process of USM, which is extremely significant for the further improvement of the performance of USM techniques.


2011 ◽  
Vol 378-379 ◽  
pp. 418-422
Author(s):  
Ji Lun Miao ◽  
Jing Qiu Chen ◽  
Cen Wen

A sliding block model is developed for predicting the runout of high-speed landslides, which couple with SPH method (Smoothed Particle Hydrodynamics) to simulate impulse wave. This model adopts the limit equilibrium analysis approach to simulate the whole travel process of the soil mass from the onset of the landslide. The submarine landslide produces highly unsteady and rapidly varied flows, so it was very complicated by fixed grid numerical simulations. The SPH method is a meshfree particle-based Lagrangian method. A sample test is given which shows the impulsive waves generated by high-speed landslide can be reproduced well.


2009 ◽  
Vol 407-408 ◽  
pp. 569-572
Author(s):  
Shi Ming Ji ◽  
Ya Qi Shen ◽  
Li Zhang ◽  
Ming Sheng Jin ◽  
Yin Dong Zhang

In this paper, a critical study into the dynamic form of abrasive particles through polishing are made, which are under “inconsistent curvature contact” status. In this system, some abrasive particles are colored up and mixed with ordinary ones, by utilizing transparent working surface and stroboscopic light as well; motion state of abrasive particles can be photographed by high speed shot technology. This method can get serials of images while polishing. By using digital image processing technology, distribution of abrasive particle field can be obtained finally. In this paper, the abrasive particles field is researched to obtain the perfect abrasive particle field after purposefully control. Then the influence of the removed material caused by abrasive particles field can be improved, so it can provide strong theory foundation and practice guidance to surface polishing practice.


2013 ◽  
Vol 838-841 ◽  
pp. 1302-1308 ◽  
Author(s):  
Jia Ding Wang ◽  
Shu Jun Peng ◽  
Wan Li Xie

In this paper based on the foundation construction of Datong Xian high-speed railway, a large number of test samples have been taken. The order and contribution rate of every experiment factor like cement commingle ratio, depths, water dipping conditions, compacting factor and vibration frequency on the dynamic characteristics of cement-improved loess such as dynamic elastic modulus, dynamic deformation, damping ratio by dynamic triaxial test, which orthogonal test method has been applied to. The dynamic load was calculated according to the train vibration attenuation rule of different depth. The dynamic characteristics of cement-improved loess such as dynamic deformation, dynamic elastic modulus, damping ratio were got form the dynamic tests of long time and large number of cycles. The results showed that with the increase of cement ratio, the dynamic characteristics of cement-improved loess are more better, there is no optimal ratio of cement.


2011 ◽  
Vol 339 ◽  
pp. 483-486 ◽  
Author(s):  
Hong Wang

The orthogonal test method has been used to study the effects of the concentration of SiC, the speed of mixing, the temperature and the surfactants on depositing rate and micro-hardness, and obtained the optimized technological scheme and fine Ni-P-SiC composite coating. The results showed that using citric acid-acetic acid as complexing agents can obtain high speed of depositing and homogeneous coating with SiC well-distributed. Among the technological parameters, the effects of temperature on depositing rate is biggest, and the surfactants is next; the effects of the concentration of SiC particles on micro-hardness is biggest, and the surfactants is next. Give consideration to depositing rate and stability of the liquid, the temperature should be controlled at 82±2°C, the concentration of SiC particles and surfactants should be controlled in 4g/L and 60mg/L.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuchun Jia ◽  
Yulong Lei ◽  
Xianghuan Liu ◽  
Yao Fu ◽  
Jianlong Hu

Purpose The lubrication of the high-speed reducer of an electric vehicle is investigated. The specific contents include visualization of the flow field inside reducer, lubrication evaluation of bearings and efficiency experiment. Design/methodology/approach The flow field inside reducer at five working conditions: straight, uphill, downhill, left lean and right lean is simulated by smoothed particle hydrodynamics (SPH). According to the instantaneous number of particles through bearings, the lubrication states of bearings are evaluated. The test platform is set up to measure the efficiency of the reducer. Findings The flow field inside the reducer is obtained, the lubrication of bearings needs to be improved, the efficiency of the electric vehicle reducer meets the requirement. Originality/value The SPH method is used to simulate lubrication instead of using the traditional grid-based finite volume method. A novel method to evaluate the lubrication of bearings is proposed. The method and conclusions can guide electric vehicle reducer design.


Author(s):  
A.V. Petukov ◽  
K.A. Grin

The paper examines the issues of mathematical modeling of ceramic armor panels’ penetration by high-speed cylindrical impactors. By means of the LS-DYNA software package, a corresponding numerical simulation methodology was developed by combining a chosen method, adjusted computational mesh cells size, appropriate Courant number, and values of linear and quadratic pseudo-viscosity coefficients. The results compared with experimental data show that Lagrangian and Eulerian numerical methods, unlike the SPH method (Smoothed Particle Hydrodynamics), improperly reproduce the process of the shock wave disintegration into an elastic precursor and a plastic wave. In addition, the common size of conical fractions dislodging from the ceramic plates was determined and the influence of the scale effect on the ceramics damage patterns was shown: an increase in the absolute value of the plate thickness leads to the increase in the dislodging cone semi-vertex angle.


Sign in / Sign up

Export Citation Format

Share Document