Exosomal Carboxypeptidase E (CPE) and CPE-shRNA Loaded Exosomes Control Growth and Invasion of Recipient Hepatocellular Carcinoma Cells

Author(s):  
Sangeetha Hareendran ◽  
Bassam Albraidy ◽  
Xuyu Yang ◽  
Aiyi Liu ◽  
Anne Breggia ◽  
...  

Abstract Background: Exosomes from cancer cells prom­ote tumor growth and metastasis through intercellular communication. However, the exosomal bioactive molecules involved and the mechanism of action remain elusive. Carboxypeptidase E (CPE) is known to drive tumor progression in different cancers, including hepatocellular carcinoma (HCC), which is associated with high mortality rate. Here, we investigated if CPE is present within cancer cell exosomes and contributes to the molecular pathogenesis of HCC and other cancers by regulating tumor growth and invasion.Methods: Exosomes isolated from the culture media of cancer cells or human serum were analyzed for CPE mRNA and protein using quantitative PCR/ RT-PCR and western blot respectively. Low-metastatic HCC97L cells were incubated with exosomes derived from high-metastatic HCC97H cells. In other experiments, HCC97H cells were incubated with CPE-shRNA loaded exosomes isolated from HEK293T cells. The recipient HCC cells were assessed for proliferation and invasion using MTT cell proliferation, colony formation and matrigel invasion assays. Results: CPE mRNA and protein were found to be packaged within exosomes released from cancer cells. We observed elevated CPE mRNA levels in secreted exosomes from high versus low-malignant cells, from various cancer types including HCC, breast cancer and glioblastoma. In a pilot study, significantly higher CPE copy numbers were found in serum exosomes from cancer patients compared to healthy donors, suggesting that exosomal CPE mRNA could be a potential diagnostic biomarker. Low-malignant HCC97L cells treated with exosomes derived from HCC97H cells, displayed enhanced proliferation and invasion; however exosomes from HCC97H cells pre-treated with CPE-shRNA failed to promote proliferation. When HEK293T exosomes loaded with CPE-shRNA, were incubated with HCC97H cells, expression of CPE, Cyclin D1, a cell-cycle regulatory protein and c-MYC, a proto-oncogene, were suppressed, resulting in diminished proliferation of HCC97H cells. Conclusions: Our results identified CPE as a bioactive molecule in exosomes driving the growth and invasion of low-malignant HCC cells, and showed that CPE-shRNA loaded exosomes can inhibit malignant tumor cell proliferation via Cyclin D1 and c-MYC suppression. Thus, CPE is a key player in exosome transmission of tumorigenesis, and exosome-based delivery of CPE-shRNA offers a potential treatment for tumor progression.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective: Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods: CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Human HCC tissues were collected to study the clinical significance VPS35 and β-catenin. Results: Firstly, KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Conclusion: We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored.Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism.Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decrease Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU.Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


Author(s):  
Xiyang Zhang ◽  
Dongbo Jiang ◽  
Shuya Yang ◽  
Yuanjie Sun ◽  
Yang Liu ◽  
...  

Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.


2018 ◽  
Vol 314 (5) ◽  
pp. G559-G565 ◽  
Author(s):  
Xinli Huang ◽  
Yun Gao ◽  
Jianjie Qin ◽  
Sen Lu

The aberrant expression of long noncoding RNAs (lncRNAs) has been involved in various human tumors including hepatocellular carcinoma (HCC). Our study aimed to investigate the potential molecular mechanism of lncRNA myocardial infarction-associated transcript (MIAT) in HCC. The expression of MIAT and micro-RNA (miR)-214 in HCC tissues and cells was examined by quantitative real-time PCR, and the levels of enhancer of zeste homolog 2 (EZH2) and β-catenin were detected by Western blot assay. Immunoprecipitation analysis was used to detect the level of H3/H4 histone acetylation. RNA pull-down assay was performed to confirm the targeting regulatory relationship between miR-214 and MIAT. Cell viability, proliferation, and invasion were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), [3H]thymidine incorporation, and Transwell assays, respectively. BALB/c nude mice were used to establish a hepatocellular carcinoma animal model with subcutaneous injection of SK-HEP-1 cells. Upregulation of MIAT is related to the proliferation and invasion of HCC, and downregulating MIAT expression inhibited HCC cell proliferation and invasion. The H3/H4 histone acetylation level of MIAT promoter in HCC tissues was higher than that in normal tissues. MIAT negatively regulated miR-214 in HCC cells. Inhibition of miR-214 reversed the influence of MIAT downregulation on HCC cell proliferation and invasion. In nude mouse xenograft models, downregulation of MIAT markedly suppressed the tumor growth of HCC via releasing miR-214. In conclusion, lncRNA MIAT promotes the proliferation and invasion of HCC cells through sponging miR-214, which brings a novel target for the therapy and prognosis of hepatocellular carcinoma. NEW & NOTEWORTHY This is the first research showing long noncoding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) to have a regulatory effect on hepatocellular carcinoma. Micro-RNA (miR)-214 could be sponged by MIAT to promote the proliferation and invasion of hepatocellular carcinoma cells. The lncRNA MIAT/miR-214 axis brings a novel insight for the therapy and prognosis of hepatocellular carcinoma.


2016 ◽  
Vol 29 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Pei-Hao Wen ◽  
Dong-Yu Wang ◽  
Jia-Kai Zhang ◽  
Zhi-Hui Wang ◽  
Jie Pan ◽  
...  

Kruppel-like factor 6 (KLF6) as a novel tumor suppressive gene participates in multiple biological behaviors and plays an important role in regulating tumor cell growth and invasion. However, the functions of KLF6 in hepatocellular carcinoma (HCC) remain poorly understood. The expression level of KLF6 was examined by immunohistochemical assay in human HCC tissues, and KLF6-overexpressed HCC cells (SMCC-7721 and HepG2) were used for evaluating cell proliferation and invasion by MTT and Transwell assays. A subcutaneous HCC tumor model was established for assessing tumor growth in vivo. Our results showed that the expression of KLF6 was significantly downregulated in HCC tissues compared with the adjacent non-cancerous tissues (50.0% vs. 72.0%, P = 0.034) and negatively associated with the lymph-vascular space invasion (LVSI) in HCC patients ( P = 0.003). Furthermore, overexpression of KLF6 reduced cell proliferation and weakened the cell invasive potential followed with the decreased expression of PCNA and MMP-9 in HCC cells. The in vivo experiment indicated that KLF6 overexpression suppressed the xenograft tumor growth. Therefore, our findings show that KLF6 suppresses growth and invasion of HCC cells in vitro and in vivo, suggesting a tumor suppressive function in HCC and provides the potential therapeutic target for the treatment of HCC.


2021 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored. Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism. Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decreased Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU. Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Weiyang Tao ◽  
Chunyang Wang ◽  
Bifa Zhu ◽  
Guoqiang Zhang ◽  
Da Pang

Abstract Breast cancer, the most frequently occurring malignant tumor, has high mortality rate, especially triple-negative breast cancer (TNBC). LncRNA-differentiation antagonizing non-protein coding RNA (lncRNA DANCR) has been found that its aberrant expression was associated with tumor progression and it was promising to be a potential target for cancer therapy. The goal of the present study was to explore the biological effects and underlying mechanism of DANCR in breast cancer. Our results showed that DANCR was up-regulated in TNBC tissues and breast cancer cells compared with normal breast tissues and cells, and higher DANCR level suggested poorer prognosis, implying that it was promising to be a novel biomarker used for TNBC diagnosis and prognosis. To better research the functions and mechanism of DANCR on breast cancer cells, we selected two cell lines used for next study: one TNBC cell line–MDA-MB-231 and one ER-positive breast cancer cell line–MCF-7. Further study indicated that DANCR overexpression significantly promoted cell proliferation and invasion in vitro and contributed to tumor growth in vivo. To deeply understand its molecular mechanism, miRNA-216a-5p was identified as a target of DANCR by bioinformatic analysis. Experiments demonstrated that miRNA-216a-5p interacted with DANCR and its inhibitor could weaken the influences induced by DANCR knockdown for cancer cells, including cell proliferation and invasion, and the expression of Nanog, SOX2, and OCT4. Therefore, DANCR might act as a tumor promoter by targetting miRNA-216a-5p, which might provide a potential therapy target for breast cancer treatment.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769594 ◽  
Author(s):  
Haiwen Chen ◽  
Qidong Luo ◽  
Hongliang Li

Inositol polyphosphate 4-phosphatase type II emerges as a tumor suppressor in prostate cancer, and its loss of expression is associated with poor prognosis for prostate cancer. However, the mechanism of downregulation of inositol polyphosphate 4-phosphatase type II in prostate cancer development has not yet been fully clarified. In this study, microRNA-590-3p was found to be upregulated in both prostate cancer tissues and cell lines. Overexpression of microRNA-590-3p by microRNA-590-3p mimics promoted prostate cancer cell proliferation and invasion and accelerated the growth of xenografted tumors, while microRNA-590-3p inhibitors contributed to inhibition of cellular proliferation and invasion as well as tumor growth. A dual-luciferase reporter assay and expression analysis further confirmed that inositol polyphosphate 4-phosphatase type II was a direct target of microRNA-590-3p. Enforced expression of microRNA-590-3p led to repression of inositol polyphosphate 4-phosphatase type II messenger RNA and protein expression, as well as upregulation of p-Akt, p-FoxO3a, and cyclin D1 and downregulation of p21 expression in prostate cancer cell lines. Overexpression of inositol polyphosphate 4-phosphatase type II could reduce microRNA-590-3p-induced cell proliferation and invasion as well as tumor growth, and decrease microRNA-590-3p-mediated upregulation of cyclin D1 and downregulation of p21 expression in prostate cancer cells. Taken together, our findings reveal that microRNA-590-3p is a potential onco-microRNA that participates in carcinogenesis of human prostate cancer by suppressing inositol polyphosphate 4-phosphatase type II expression and involving the Akt/FoxO3a pathway. MicroRNA-590-3p may represent a potential therapeutic target for prostate cancer patients.


Author(s):  
Yanhua Li ◽  
Xia Chen ◽  
Hong Lu

The gene solute carrier family 34 (sodium phosphate), member 2 (SLC34A2), is a member of the SLC34 family. Increasing evidence suggests that SLC34A2 is involved in the development of many human carcinomas. However, its role in hepatocellular carcinoma (HCC) is still unclear. Therefore, in this study we investigated the role of SLC34A2 in HCC and explored the underlying mechanism. We found that the expression of SLC34A2 is upregulated in HCC cell lines. Knockdown of SLC34A2 obviously inhibited HCC cell proliferation, migration/invasion, and the epithelial‐mesenchymal transition (EMT) phenotype. Furthermore, knockdown of SLC34A2 significantly inhibited the expression of phosphorylated PI3K and AKT in HCC cells. Taken together, these results suggest that knockdown of SLC34A2 inhibits proliferation and migration by suppressing activation of the PI3K/AKT signaling pathway in HCC cells, and SLC34A2 may be a potential therapeutic target for the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document