scholarly journals UBA2 Activates Wnt/ β-catenin Signaling Pathway during Protection of R28 Retinal Precursor Cells from Hypoxia by Extracellular Vesicles derived from Placental Mesenchymal Stem Cells

2020 ◽  
Author(s):  
Kyungmin Koh ◽  
Mira Park ◽  
Eun Soo Bae ◽  
Van-An Duong ◽  
Jong-Moon Park ◽  
...  

Abstract Background: Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta–derived mesenchymal stem cells (hPMSCs), and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method: After nine hours of exposure to CoCl2, the hypoxic damaged R28 cells were divided into non treatment group (CoCl2+R28 cells) and treatment group (CoCl2+R28 cells treated with exosome). Immunoblot analysis was performed for Pcna, Hif-1α, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis. Result: We observed that Exosome could significantly recover proliferation damaged by CoCl2 treatment. In addition, treatment group presented the decreased expression of Hif-1α protein (P < 0.05) and increased expression of proliferation marker, Pcna, and nerve regeneration–related factors such as Vimentin, Thy-1 and Neuroflament (P < 0.05) compared with non-treatment group. In total, 200 DEPs were identified in non-treatment group and treatment group (fold change ≥ 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of downregulated proteins from non-treatment group and upregulated proteins from treatment group. The mRNA expressions of ubiquitin systems were significantly decreased under hypoxic condition. Moreover, UBA2 and Wnt/β-catenin protein were associated with rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find it out that hPMSC exosoms could not repair altered expressions of target proteins by CoCl2 in lacking UBA2 R28 cells. Conclusion: This study reported that hypoxic damaged expression of regeneration markers in R28 cells were significantly recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyungmin Koh ◽  
Mira Park ◽  
Eun Soo Bae ◽  
Van-An Duong ◽  
Jong-Moon Park ◽  
...  

Abstract Background Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta-derived mesenchymal stem cells (hPMSCs) and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method After 9 h of exposure to CoCl2, the hypoxic damaged R28 cells were divided into the non-treatment group (CoCl2 + R28 cells) and treatment group (CoCl2 + R28 cells treated with exosome). Immunoblot analysis was performed for Pcna, Hif-1α, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification, and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis. Result We observed that exosome could significantly recover proliferation damaged by CoCl2 treatment. In addition, the treatment group presented the decreased expression of Hif-1α protein (P < 0.05) and increased expression of proliferation marker, Pcna, and nerve regeneration-related factors such as Vimentin, Thy-1, and Neuroflament (P < 0.05) compared with the non-treatment group. In total, 200 DEPs were identified in the non-treatment group and treatment group (fold change ≥ 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of downregulated proteins from the non-treatment group and upregulated proteins from the treatment group. The mRNA expressions of ubiquitin systems were significantly decreased under hypoxic conditions. Moreover, UBA2 and Wnt/β-catenin protein were associated with the rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find it out that hPMSC exosomes could not repair altered expressions of target proteins by CoCl2 in lacking UBA2 R28 cells. Conclusion This study reported that hypoxic damaged expression of regeneration markers in R28 cells was significantly recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.


2020 ◽  
Author(s):  
Kyungmin Koh ◽  
Mira Park ◽  
Eun Soo Bae ◽  
Van-An Duong ◽  
Jong-Moon Park ◽  
...  

Abstract Background: Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta–derived mesenchymal stem cells (hPMSCs), and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method: After nine hours of exposure to CoCl2, the hypoxic damaged R28 cells were divided into non treatment group (CoCl2+R28 cells) and treatment group (CoCl2+R28 cells treated with exosome). Immunoblot analysis was performed for Hif-1α, Vegf, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis. Result: Treatment group presented the decreased expression of Hif-1α protein (P < 0.05) and increased expression of nerve regeneration–related factors such as Thy-1 and Neuroflament (P < 0.05) compared with non treatment group. In total, 200 DEPs were identified in non treatment group and treatment group (fold change ≥ 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of downregulated proteins from non treatment group and upregulated proteins from treatment group. The mRNA expressions of ubiquitin systems were significantly decreased under hypoxic condition. Moreover, UBA2 and Wnt/β-catenin protein were associated with rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find it out that hPMSC exosoms could not repair altered expressions of target proteins by CoCl2 in lacking UBA2 R28 cells. Conclusion: This study reported that hypoxic damaged expression of regeneration markers in R28 cells were significantly recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.


2020 ◽  
Author(s):  
Kyungmin Koh ◽  
Mira Park ◽  
Eun Soo Bae ◽  
Van-An Duong ◽  
Jong-Moon Park ◽  
...  

Abstract Background: Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells (MSCs), with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta–derived mesenchymal stem cells (hPMSCs), and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2 . Method: We investigated recovery effects of exosomes in vitro damaged cells. We exposed R28 cells to CoCl2. After 9 h, the hypoxia-damaged R28 cells were treated with hPMSC-derived exosomes. We examined the changes in the target proteins of R28 cells and performed proteomic analysis using R28 cells. Result: Upon this exosome treatment of R28 cells damaged by a hypoxic environment, the expression of Hif-1α protein (which increased after CoCl2 exposure) significantly decreased, whereas that of nerve regeneration–related factors such as Thy-1 and Neuroflament (which decreased after CoCl2 exposure) significantly increased. Proteomic analysis was used to analyze the expression of candidate target proteins such as UBA2 and catenin, which showed significant changes in expression during the recovery period in the damaged cell group. Conclusion: In this study, we discovered that UBA2 played a key role in activating the Wnt/β-catenin signaling pathway during the recovery process of damaged R28 cells, induced by hPMSC exosomes.


2021 ◽  
Author(s):  
Xuan Xu ◽  
Jianye Wang ◽  
Liu Dong ◽  
Qiong Xing ◽  
Ying Wang ◽  
...  

Abstract BackgroundThere are many studies on the advantages of mesenchymal stem cells (MSCs) that could secret various paracrine factors in repairing endometrial injury. It is necessary to improve the stability and effectiveness of MSCs. Hepatocyte growth factor (HGF), as one of the cytokines secreted by MSCs, plays a significant role in vascular repair and mesenchymal to epithelial transformation (MET). It can be deduced that HGF is closely related to the repair process of endometrium.Therefore, we aim to investigate the effect and mechanism of MSCs from umbilical cord transfected with HGF gene in the damaged mouse endometrium.MethodsHGF gene transfected MSCs were prepared by electroporation. After determining the cell characteristics and cell activity of HGF gene transfected MSCs, the ability of HGF gene transfected MSCs to express HGF was detected by enzyme-linked immunosorbent assay. Totally, 60 female mice were randomly divided into Control group, Saline group, MSCs group , and HGF gene-transfected MSCs (MSCshgf) group. Each group of mice received treatment after injury. HE staining were used to evaluate the changes in the thickness of endometrial epithelium and the number of endometrial glands. Immunofluorescence was used to evaluate the molecular repair effect. Real time fluorescent quantitative polymerase chain reaction was used to compare the expression of angiogenesis related factors. Western blot was used to detect the activation of HGF/c-Met and AKT signaling pathways.ResultsHGF gene transfected MSCs retained the characteristics of original MSCs, and the concentration of HGF secreted by MSCs transfected with HGF gene was higher than that of normal MSCs. Compared with normal MSCs, HGF gene transfected MSCs have a more effect in promoting the repair of damaged endometrial epithelium, mainly in significantly increasing the thickness of damaged endometrial epithelium, increasing the number of glands and proliferating cells(p<0.01). Meanwhile, HGF gene transfected MSCs can improve the expression level of endometrial vascular growth related factors and promote the MET process (p<0.01). At the same time, Western blotting confirmed that these repair effects were related to HGF activation of its receptor c-Met and downstream AKT signaling pathway.ConclusionsCompared with normal MSCs, HGF gene transfected MSCs have a more significant effect in repairing the damaged endometrial epithelium. This effect is achieved by activating the receptor c-Met of HGF and downstream AKT pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mira Park ◽  
Jae Yeon Kim ◽  
Jun Mo Kang ◽  
Hey Jin Lee ◽  
Jasvinder Paul Banga ◽  
...  

Abstract Background Graves’ ophthalmopathy (GO) is a disorder, in which orbital connective tissues get in inflammation and increase in volume. Stimulants such as thyroid-stimulating hormone (TSH), insulin-like growth factor 1(IGF-1), IL-1, interferon γ, and platelet-derived growth factor cause differentiation into adipocytes of orbital fibroblasts (OFs) in the orbital fat and extraocular muscles. Human placental mesenchymal stem cells (hPMSCs) are known to have immune modulation effects on disease pathogenesis. Some reports suggest that hPMSCs can elicit therapeutic effects, but to date, research on this has been insufficient. In this study, we constructed PRL-1 overexpressed hPMSCs (hPMSCsPRL-1) in an attempt to enhance the suppressive function of adipogenesis in GO animal models. Methods In order to investigate the anti-adipogenic effects, primary OFs were incubated with differentiation medium for 10 days. After co-culturing with hPMSCsPRL-1, the characteristics of the OFs were analyzed using Nile red stain and quantitative real-time polymerase chain reaction. We then examined the in vivo regulatory effectiveness of hPMSCsPRL-1 in a GO mouse model that immunized by leg muscle electroporation of pTriEx1.1Neo-hTSHR A-subunit plasmid. Human PMSCsPRL-1 injection was performed in left orbit. We also analyzed the anti-adipogenic effects of hPMSCsPRL-1 in the GO model. Results We found that hPMSCsPRL-1 inhibited adipogenic activation factors, specifically PPARγ, C/EBPα, FABP4, SREBP2, and HMGCR, by 75.1%, 50%, 79.6%, 81.8%, and 87%, respectively, compared with naïve hPMSCs in adipogenesis-induced primary OFs from GO. Moreover, hPMSCsPRL-1 more effectively inhibited adipogenic factors ADIPONECTIN and HMGCR by 53.2% and 31.7%, respectively, than hPMSCs, compared with 15.8% and 29.8% using steroids in the orbital fat of the GO animal model. Conclusion Our findings suggest that hPMSCsPRL-1 would restore inflammation and adipogenesis of GO model and demonstrate that they could be applied as a novel treatment for GO patients.


2020 ◽  
Author(s):  
Zhanao Liu ◽  
Ailing Tian ◽  
Xin Yi ◽  
Lufeng Fan ◽  
Wenchong Shao ◽  
...  

Abstract Objectives: To investigate the transplantation of a functionalized self-assembling nanopeptide hydrogel loaded with adipose-derived mesenchymal stem cells (AD-MSCs) into a rabbit hindlimb ischemia model and to evaluate its effect in promoting vascular regeneration in ischemic tissues.Methods: Functionalized self-assembling nanopeptide hydrogels were synthesized, and the physical and chemical properties of the hydrogels were observed by electron microscopy. Primary AD-MSCs were isolated, cultured, immunophenotyped, induced to differentiate, and verified. The self-assembling nanopeptide hydrogel was combined with mesenchymal stem cells for the three-dimensional culture of AD-MSCs, and the growth characteristics were investigated. Animal models were injected with AD-MSC-loaded self-assembled peptide hydrogel, and the therapeutic effects on arterial ischemia were analyzed.Results: The pore size of the functionalized self-assembling nanopeptide hydrogel was suitable for cell growth. Stem cells had a tendency for migration, differentiation, and angiogenesis in three-dimensional culture. The experimental results of transplantation into the rabbit hindlimb ischemia model showed that the functionalized self-assembling nanopeptide hydrogel loaded with AD-MSCs had better efficacy than AD-MSC transplantation alone.Conclusion: Functionalized self-assembling nanopeptide hydrogels can be used as scaffold materials for three-dimensional culture of AD-MSCs. Functionalized self-assembling peptide hydrogels combined with AD-MSCs have better therapeutic effects than traditional stem cell therapies and can promote vascular regeneration.


2021 ◽  
Author(s):  
Yuan Liwei ◽  
Cao Jia ◽  
Hu Mingyue ◽  
Xu Dabao ◽  
Li Yan ◽  
...  

Abstract Background: Although the effect of bone marrow mesenchymal stem cells (BMSCs) combined with estrogen therapy in the repair of endometrial injury has been confirmed, its underlying molecular mechanism in intrauterine adhesion (IUA) remains unclear. In this study, we aim to investigate the effect and involvement of a combination of BMSCs with estrogen in restoration of injured endometrium by applying a rabbit endometrial injury model. Method: BMSCs were isolated and labeled with PKH26 fluorescent dye. The IUA animal model was generated by a dual damage method of mechanical curettage and lipopolysaccharide infection. Rabbits were randomly assigned to the following 5 groups: sham operation group, IUA model group, E2 treatment group, BMSCs treatment group, and BMSCs combined with E2 treatment group. Bilateral uterus were obtained at different time points for the further study. HE and Masson staining were used to evaluate the number of endometrial glands and the degree of fibrosis. The expression of fibrosis and EMT related markers were observed by Immunohistochemical, immunofluorescence staining and Western blot. The expression of core molecules in the Wnt/β-catenin signaling pathway was examined by Western blot.Results: In the present study, it is found that PKH26 fluorescent dye can successfully label BMSCs and track the distribution and differentiation of transplanted BMSCs. BMSCs differentiated into endometrial epithelial cells and mainly located around the endometrial glands and extracellular matrix at 3 or 5 days post-transplantation, while BMSCs primarily differentiated into endometrial stromal cells at 7 days after orthotopic transplantation. Furthermore, after combined treatment of BMSCs and estrogen, the number of glands increased significantly, and the area of fibrosis reduced evidently, accompanied by a downregulation of mesenchymal markers and upregulation of epithelial markers when compared with each single treatment group. The expression levels of core molecules in the Wnt/β-catenin signaling pathway were higher in the BMSCs+E2 group than in the other treatment groups. Conclusions: Our study demonstrates that BMSCs combined with estrogen can improve the repair after endometrial injury by promoting the proliferation of endometrial epithelial cells and inhibiting EMT and endometrial fibrosis. This combined effect is achieved in part through activation of the Wnt/β-catenin signaling pathway.


2020 ◽  
Author(s):  
Zhanao Liu ◽  
Ailing Tian ◽  
Xin Yi ◽  
Lufeng Fan ◽  
Wenchong Shao ◽  
...  

Abstract Background: To investigate the transplantation of a functionalized self-assembling nanopeptide hydrogel loaded with adipose-derived mesenchymal stem cells (AD-MSCs) into a rabbit hindlimb ischemia model and to evaluate its effect in promoting vascular regeneration in ischemic tissues.Methods: Functionalized self-assembling nanopeptide hydrogels were synthesized, and the physical and chemical properties of the hydrogels were observed by electron microscopy. Primary AD-MSCs were isolated, cultured, immunophenotyped, induced to differentiate, and verified. The self-assembling nanopeptide hydrogel was combined with mesenchymal stem cells for the three-dimensional culture of AD-MSCs, and the growth characteristics were investigated. Animal models were injected with AD-MSC-loaded self-assembled peptide hydrogel, and the therapeutic effects on arterial ischemia were analyzed.Results: The pore size of the functionalized self-assembling nanopeptide hydrogel was suitable for cell growth. Stem cells had a tendency for migration, differentiation, and angiogenesis in three-dimensional culture. The experimental results of transplantation into the rabbit hindlimb ischemia model showed that the functionalized self-assembling nanopeptide hydrogel loaded with AD-MSCs had better efficacy than AD-MSC transplantation alone.Conclusion: Functionalized self-assembling nanopeptide hydrogels can be used as scaffold materials for three-dimensional culture of AD-MSCs. Functionalized self-assembling peptide hydrogels combined with AD-MSCs have better therapeutic effects than traditional stem cell therapies and can promote vascular regeneration.


Sign in / Sign up

Export Citation Format

Share Document