High-performance aqueous sodium-ion/sulfur battery using elemental sulfur

Author(s):  
Mukesh Kumar ◽  
Neha Thakur ◽  
Ankur Bordoloi ◽  
Ashok Yadav ◽  
Shambhunath Jha ◽  
...  

Abstract Despite a promising outlook, the large-scale application of aqueous rechargeable sodium-ion batteries (ARSIBs) was impeded due to low-capacity electrode materials. Herein we report a high capacity elemental sulfur-based anode (S@NiVP/Pi-NCS) for aqueous rechargeable sodium ion-sulfur batteries using 70 % of elemental sulfur which deliver an outstanding capacity of 826 mA h/g at 0.5 C with an excellent cycling stability even at 10 C and a negligible capacity decay with 0.03 % sulfur loss per cycle even after 400 cycles. In-situ spectro-electrochemical analysis confirms good anchoring ability of the anode and a faster redox kinetics of polysulfide conversion. The chemical interaction with vanadium provides faster redox kinetics of polysulfide conversion and efficient anchoring as revealed by XPS and was further supported by XANES and EXAFS studies wherein the distortion at the V site and overlapping electronic states in NiVP/Pi catalyst was observed. Further, full cell battery using S@NiVP/Pi-NCS anode and Na0.44MnO2 cathode demonstrates an excellent initial capacity of 705 mA h/g based on S loading and 91.7 mAh/g w.r.t. total electrode weight at 0.5 C with 91 % of capacity retention after 400 cycles and two full cells connected in series able to power LED demonstrate its practical application.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing He ◽  
Ping Man ◽  
Qichong Zhang ◽  
Huili Fu ◽  
Zhenyu Zhou ◽  
...  

AbstractExtensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries (ARSIBs) for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes. However, it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials. In this work, nanocube-like KNiFe(CN)6 (KNHCF) and rugby ball-like NaTi2(PO4)3 (NTP) are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode (KNHCF@CNTF) and anode (NTP@CNTF), respectively. Taking advantage of their high conductivity, fast charge transport paths, and large accessible surface area, the as-fabricated binder-free electrodes display admirable electrochemical performance. Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF, a high-performance quasi-solid-state fiber-shaped ARSIB (FARSIB) is successfully assembled for the first time. Significantly, the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm−3 and impressive energy density of 39.32 mWh cm−3. More encouragingly, our FARSIB delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for over 3000 cycles. Thus, this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Santanu Mukherjee ◽  
Shakir Bin Mujib ◽  
Davi Soares ◽  
Gurpreet Singh

Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage. However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore, in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to be developed and researched. This review aims to provide an exhaustive discussion about the state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the variety of advantages they demonstrate in various critically important parameters, such as electronic conductivity, structural stability, cycle life, and reversibility.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 9797-9806
Author(s):  
Thamraa Alshahrani

Electrode materials with high fast charging and high capacity are urgently required for the realization of sodium-ion batteries (SIBs).


Author(s):  
Irshad Mohammad ◽  
Lucie Blondeau ◽  
Eddy Foy ◽  
Jocelyne Leroy ◽  
Eric Leroy ◽  
...  

Following the trends of alloys as negative electrodes for Na-ion batteries, the sodiation of the InSb intermetallic compound was investigated for the first time. The benefit of coupling Sb with...


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2015 ◽  
Vol 8 (10) ◽  
pp. 2916-2921 ◽  
Author(s):  
Wei Li ◽  
Min Zhou ◽  
Haomiao Li ◽  
Kangli Wang ◽  
Shijie Cheng ◽  
...  

Sulfur-doped disordered carbon exhibits high capacity and excellent cyclability as an anode for sodium ion batteries.


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuangshuang Ding ◽  
Bingxin Zhou ◽  
Changmiao Chen ◽  
Zhao Huang ◽  
Pengchao Li ◽  
...  

AbstractSodium-ion batteries (SIBs) are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance. However, there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+ and can exhibit excellent electrochemical performance. Herein, the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity (660 and 589 mAh g−1 at 1 and 3 A g−1, respectively) and excellent rate property (about 100% retention at 10 and 20 A g−1 after 1000 cycles) at room temperature. Moreover, the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0 °C. An unlike traditional mechanism of VS4 for Na+ storage was proposed according to the dates of ex situ characterization, cyclic voltammetry, and electrochemical kinetic analysis. The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S, which were considered the reaction mechanisms of Na–S batteries. This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries, semiconductor devices, and catalysts.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Sign in / Sign up

Export Citation Format

Share Document