scholarly journals Non-Abelian Bloch oscillations in higher-order topological insulators

2020 ◽  
Author(s):  
Marco Di Liberto ◽  
Nathan Goldman ◽  
Giandomenico Palumbo

Abstract Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geometric and topological properties of the underlying band structure. This has established BOs as a prominent tool for the detection of Berry phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a unique topological effect that manifests in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is characterized by an oscillating Hall drift that is synchronized with a topologically-protected inter-band beating and a multiplied Bloch period. We identify the origin of this synchronization mechanism through a quantum dance of Wannier centers. Our work paves the way to the experimental detection of non-Abelian topological properties in synthetic matter through the measurement of Berry phases and center-of-mass displacements.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Di Liberto ◽  
N. Goldman ◽  
G. Palumbo

AbstractBloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to a force. Observed in a wide range of synthetic systems, BOs are intrinsically related to geometric and topological properties of the underlying band structure. This has established BOs as a prominent tool for the detection of Berry-phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a unique topological effect that manifests in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is characterized by an oscillating Hall drift synchronized with a topologically-protected inter-band beating and a multiplied Bloch period. We elucidate that the origin of this synchronization mechanism relies on the periodic quantum dynamics of Wannier centers. Our work paves the way to the experimental detection of non-Abelian topological properties through the measurement of Berry phases and center-of-mass displacements.


2021 ◽  
Author(s):  
Marco S. Kirsch ◽  
Yiqi Zhang ◽  
Mark Kremer ◽  
Lukas J. Maczewsky ◽  
Sergey K. Ivanov ◽  
...  

AbstractHigher-order topological insulators are a novel topological phase beyond the framework of conventional bulk–boundary correspondence1,2. In these peculiar systems, the topologically non-trivial boundary modes are characterized by a co-dimension of at least two3,4. Despite several promising preliminary considerations regarding the impact of nonlinearity in such systems5,6, the flourishing field of experimental higher-order topological insulator research has thus far been confined to the linear evolution of topological states. As such, the observation of the interplay between nonlinearity and the dynamics of higher-order topological phases in conservative systems remains elusive. Here we experimentally demonstrate nonlinear higher-order topological corner states. Our photonic platform enables us to observe nonlinear topological corner states as well as the formation of solitons in such topological structures. Our work paves the way towards the exploration of topological properties of matter in the nonlinear regime, and may herald a new class of compact devices that harnesses the intriguing features of topology in an on-demand fashion.


2019 ◽  
Vol 26 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Natalie K. Garcia ◽  
Galahad Deperalta ◽  
Aaron T. Wecksler

Background: Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. Conclusion: Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.


2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


2018 ◽  
Vol 40 (1) ◽  
pp. 133-153 ◽  
Author(s):  
Ewa Skimina ◽  
Jan Cieciuch ◽  
Włodzimierz Strus

AbstractThe aims of this study were to compare (a) personality traits vs personal values, (b) Five-Factor Model (FFM) vs HEXACO model of personality traits, and (c) broad vs narrow personality constructs in terms of their relationship with the frequency of everyday behaviors. These relationships were analyzed at three organizational levels of self-reported behavior: (a) single behavioral acts, (b) behavioral components (empirically derived categories of similar behaviors), and (c) two higher-order factors. The study was conducted on a Polish sample (N = 532, age range 16–72). We found that (a) even the frequencies of single behavioral acts were related to various personality constructs instead of one narrow trait or value, (b) personality traits and personal values were comparable as predictors of a wide range of everyday behaviors, (c) HEXACO correlated with the frequency of behaviors slightly higher than FFM, and (d) narrow and broad personality constructs did not differ substantially as predictors of everyday behavior at the levels of acts and components, but at the level of higher-order behavioral factors, broad personality measures were better predictors than narrow ones.


2020 ◽  
Vol 124 (4) ◽  
Author(s):  
Apoorv Tiwari ◽  
Ming-Hao Li ◽  
B. A. Bernevig ◽  
Titus Neupert ◽  
S. A. Parameswaran

Sign in / Sign up

Export Citation Format

Share Document