scholarly journals Operando Investigation of the Locally Enhanced Electric Field Treatment (LEEFT) Harnessing Lightning-Rod Effect for Rapid Bacteria Inactivation

Author(s):  
Ting Wang ◽  
Devin k. Brown ◽  
Xing Xie

Abstract The growth of undesired bacteria causes numerous problems. Here, we show that locally enhanced electric field treatment (LEEFT) can cause rapid bacteria inactivation by electroporation without any side reactions. The bacteria inactivation is studied in situ at the single-cell level on a lab-on-a-chip that has nanowedge-decorated electrodes. Rapid bacteria inactivation occurs specifically at nanowedge tips where the electric field is enhanced due to the lightning-rod effect. The mechanism study shows that the bacteria inactivation is caused by electroporation induced by the locally enhanced electric field. The bacteria inactivation performance depends on the strength of the enhanced electric field instead of the applied voltage, and no ROS generation is detected when >90% bacteria inactivation is achieved. Quick membrane pore closure under moderate LEEFT indicates that electroporation is the predominant mechanism. LEEFT only requires facile treatment to achieve bacteria inactivation, which is safe for treating delicate samples and energy-efficient for large scale applications. The findings in this work can provide strong supports for the future applications of LEEFT.

2021 ◽  
Author(s):  
Ting Wang ◽  
Devin k. Brown ◽  
Xing Xie

Abstract The growth of undesired bacteria can cause numerous problems. Seeking effective and sustainable bacteria inactivation approaches is an everlasting effort. Here, we show that nano-enhanced electric field treatment (NEEFT) can cause rapid bacteria inactivation with a lower applied voltage than bulk EFT. A lab-on-a-chip with nanowedge-modified electrodes is developed, and the bacteria inactivation in NEEFT is visualized and studied in real-time at a single-cell level. Rapid bacteria inactivation (~ 1 ms) occurs specifically at nanowedge tips where the electric field is enhanced due to the lightning-rod effect. Nanowedges with a high aspect ratio are critical for bacteria inactivation. NEEFT works for both immobilized and free-moving cells, where the free-moving cells will be first attracted to the nanowedge tips followed by rapid inactivation. The mechanism study shows that the bacteria inactivation is caused by electroporation induced by the nano-enhanced electric field. The bacteria inactivation performance depends on the strength of the enhanced electric field instead of the applied voltage. Quick pore closure and membrane recovery under moderate NEEFT indicate that electroporation is the predominant mechanism. NEEFT only requires facile treatment to achieve bacteria inactivation, which is safe for treating delicate samples and energy-efficient for large scale applications. It is also expected to find applications for targeted cell inactivation.


2021 ◽  
Author(s):  
Xianzhong Yang ◽  
Chao Li ◽  
Zhongti Sun ◽  
Shuai Yang ◽  
Zixiong Shi ◽  
...  

Abstract Zn metal anode has garnered growing scientific and industrial interest owing to its appropriate redox potential, low cost and good safety. Nevertheless, the instability of Zn metal, caused by dendrite formation, hydrogen evolution and side reactions, gives rise to poor electrochemical stability and unsatisfactory cycling life, greatly hampering large-scale utilization. Herein, an in-situ grown ZnSe layer with controllable thickness is crafted over one side of commercial Zn foil via chemical vapor deposition, aiming to achieve optimized interfacial manipulation between aqueous electrolyte/Zn anode. Thus-derived ZnSe overlayer not only prevents water penetration and restricts Zn2+ two-dimensional diffusion, but also homogenizes the electric field at the interface and facilitates favorable (002) plane growth of Zn. As a result, dendrite-free and homogeneous Zn deposition is obtained; side reactions are concurrently inhibited. In consequence, a high Coulombic efficiency of 99.2% and high cyclic stability for 860 cycles at 1.0 mA cm–2 in symmetrical cells is harvested. Meanwhile, when paired with V2O5 cathode, assembled full cell achieves an outstanding initial capacity (200 mAh g–1) and elongated lifespan (a capacity retention of 84% after 1000 cycles) at 5.0 A g–1. Our highly reversible Zn anode enabled by the interfacial manipulation strategy is anticipated to satisfy the demand of industrial and commercial use.


2006 ◽  
Vol 24 (3) ◽  
pp. 941-959 ◽  
Author(s):  
D. L. Green ◽  
C. L. Waters ◽  
B. J. Anderson ◽  
H. Korth ◽  
R. J. Barnes

Abstract. The Birkeland currents, J||, electrically couple the high latitude ionosphere with the near Earth space environment. Approximating the spatial distribution of the Birkeland currents may be achieved using the divergence of the ionospheric electric field, , assuming zero conductance gradients such that . In this paper, electric field data derived from the Super Dual Auroral Radar Network (SuperDARN) are used to calculate , which is compared with the Birkeland current distribution derived globally from the constellation of Iridium satellites poleward of 60° magnetic latitude. We find that the assumption of zero conductance gradients is often a poor approximation. On the dayside, in regions where the SuperDARN electric field is constrained by radar returns, the agreement in the locations of regions of upward and downward current between and J|| obtained from Iridium data is reasonable with differences of less than 3° in the latitudinal location of major current features. It is also shown that away from noon, currents arising from conductance gradients can be larger than the component. By combining the estimate in regions of radar coverage with in-situ estimates of conductance gradients from DMSP satellite particle data, the agreement with the Iridium derived J|| is considerably improved. However, using an empirical model of ionospheric conductance did not account for the conductance gradient current terms. In regions where radar data are sparse or non-existent and therefore constrained by the statistical potential model the approximation does not agree with J|| calculated from Iridium data.


Author(s):  
Solène Lejosne ◽  
Mariangel Fedrizzi ◽  
Naomi Maruyama ◽  
Richard S. Selesnick

Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt.


2019 ◽  
Vol 116 (22) ◽  
pp. 10658-10663 ◽  
Author(s):  
Ziyuan Song ◽  
Hailin Fu ◽  
Jiang Wang ◽  
Jingshu Hui ◽  
Tianrui Xue ◽  
...  

Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N-carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials.


2018 ◽  
Vol 23 (suppl_1) ◽  
pp. e16-e16
Author(s):  
Ahmed Moussa ◽  
Audrey Larone-Juneau ◽  
Laura Fazilleau ◽  
Marie-Eve Rochon ◽  
Justine Giroux ◽  
...  

Abstract BACKGROUND Transitions to new healthcare environments can negatively impact patient care and threaten patient safety. Immersive in situ simulation conducted in newly constructed single family room (SFR) Neonatal Intensive Care Units (NICUs) prior to occupancy, has been shown to be effective in testing new environments and identifying latent safety threats (LSTs). These simulations overlay human factors to identify LSTs as new and existing process and systems are implemented in the new environment OBJECTIVES We aimed to demonstrate that large-scale, immersive, in situ simulation prior to the transition to a new SFR NICU improves: 1) systems readiness, 2) staff preparedness, 3) patient safety, 4) staff comfort with simulation, and 5) staff attitude towards culture change. DESIGN/METHODS Multidisciplinary teams of neonatal healthcare providers (HCP) and parents of former NICU patients participated in large-scale, immersive in-situ simulations conducted in the new NICU prior to occupancy. One eighth of the NICU was outfitted with equipment and mannequins and staff performed in their native roles. Multidisciplinary debriefings, which included parents, were conducted immediately after simulations to identify LSTs. Through an iterative process issues were resolved and additional simulations conducted. Debriefings were documented and debriefing transcripts transcribed and LSTs classified using qualitative methods. To assess systems readiness and staff preparedness for transition into the new NICU, HCPs completed surveys prior to transition, post-simulation and post-transition. Systems readiness and staff preparedness were rated on a 5-point Likert scale. Average survey responses were analyzed using dependent samples t-tests and repeated measures ANOVAs. RESULTS One hundred eight HCPs and 24 parents participated in six half-day simulation sessions. A total of 75 LSTs were identified and were categorized into eight themes: 1) work organization, 2) orientation and parent wayfinding, 3) communication devices/systems, 4) nursing and resuscitation equipment, 5) ergonomics, 6) parent comfort; 7) work processes, and 8) interdepartmental interactions. Prior to the transition to the new NICU, 76% of the LSTs were resolved. Survey response rate was 31%, 16%, 7% for baseline, post-simulation and post-move surveys, respectively. System readiness at baseline was 1.3/5,. Post-simulation systems readiness was 3.5/5 (p = 0.0001) and post-transition was 3.9/5 (p = 0.02). Staff preparedness at baseline was 1.4/5. Staff preparedness post-simulation was 3.3/5 (p = 0.006) and post-transition was 3.9/5 (p = 0.03). CONCLUSION Large-scale, immersive in situ simulation is a feasible and effective methodology for identifying LSTs, improving systems readiness and staff preparedness in a new SFR NICU prior to occupancy. However, to optimize patient safety, identified LSTs must be mitigated prior to occupancy. Coordinating large-scale simulations is worth the time and cost investment necessary to optimize systems and ensure patient safety prior to transition to a new SFR NICU.


2020 ◽  
Vol 74 (11) ◽  
pp. 866-870
Author(s):  
Lewis C. H. Maddock ◽  
Alan Kennedy ◽  
Eva Hevia

While fluoroaryl fragments are ubiquitous in many pharmaceuticals, the deprotonation of fluoroarenes using organolithium bases constitutes an important challenge in polar organometallic chemistry. This has been widely attributed to the low stability of the in situ generated aryl lithium intermediates that even at –78 °C can undergo unwanted side reactions. Herein, pairing lithium amide LiHMDS (HMDS = N{SiMe3}2) with FeII(HMDS)2 enables the selective deprotonation at room temperature of pentafluorobenzene and 1,3,5-trifluorobenzene via the mixed-metal base [(dioxane)LiFe(HMDS)3] (1) (dioxane = 1,4-dioxane). Structural elucidation of the organometallic intermediates [(dioxane)Li(HMDS)2Fe(ArF)] (ArF = C6F5, 2; 1,3,5-F3-C6H2, 3) prior electrophilic interception demonstrates that these deprotonations are actually ferrations, with Fe occupying the position previously filled by a hydrogen atom. Notwithstanding, the presence of lithium is essential for the reactions to take place as Fe II (HMDS)2 on its own is completely inert towards the metallation of these substrates. Interestingly 2 and 3 are thermally stable and they do not undergo benzyne formation via LiF elimination.


Sign in / Sign up

Export Citation Format

Share Document