scholarly journals Determining the Minimum Inhibitory Concentration of Medium Chain Fatty Acids for generic Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella Typhimurium, Campylobacter coli, and Clostridium perfringens.

2020 ◽  
Author(s):  
Roger A. Cochrane ◽  
Raghavendra G. Amachawadi ◽  
Sarah E. Remfry ◽  
Annie B. Lerner ◽  
Tiruvoor G. Nagaraja ◽  
...  

Abstract Research has demonstrated that medium chain fatty acids (MCFA) can serve as reduction strategies for bacterial and viral pathogens in animal feed and ingredients. However, it is unknown how the type or level of MCFA impact bacteria growth. This can be tested through a minimum inhibitory concentration (MIC) benchtop assay, which identifies the lowest concentration of a chemical that prevents visible growth of a bacterium. The objective of this study was to 1) determine the MCFA MIC of C6:0, C8:0, C10:0, and C12:0 for generic Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella Typhimurium, Campylobacter coli, and Clostridium perfringens; 2) determine the MIC of commercial based MCFA products against the same bacteria; and 3) determine the effect of 2 commercial based MCFA products on the quantification of Enterotoxigenic Escherichia coli. For Exp. 1 and 2, MIC were determined by modified microbroth dilution method using a 96 well microtiter plate with a concentration of 105 CFU/mL for each bacterial strain. For Exp. 3, the two products selected for quantification were mixed with a complete swine diet and inoculated with two concentrations (106 or 102 CFU/g of feed) of a NalR strain of Enterotoxigenic Escherichia coli (ETEC) for bacterial enumeration. From Exp. 1, the MIC of MCFA varied among bacteria species. The lowest MIC of the MCFA was 0.43% of a 1:1:1 blend of C6:0, C8:0, and C10:0 for Campylobacter coli, 0.25% C12:0 for Clostridium perfringens, 0.60% 1:1:1 blend for generic Escherichia coli, 0.53% C6:0 for ETEC, and 0.40% C6:0 for Salmonella Typhimurium. In Exp. 2, products containing high concentrations of C6:0 or C8:0 had lower MIC in gram negative bacteria. In Exp. 3, feed containing either of the commercial based MCFA products reduced (linear, P < 0.05) quantifiable ETEC. Overall, the inhibitory efficacy of MCFA varies among bacteria species. This suggests that MCFA mixtures may provide a wider spectrum of bacterial control. As commercial products containing MCFA become available for livestock, it is important to consider the interaction between MCFA chain length and concentration on the potential to effectively mitigate various feed-based bacteria.

1981 ◽  
Vol 256 (8) ◽  
pp. 3735-3742
Author(s):  
S.R. Maloy ◽  
C.L. Ginsburgh ◽  
R.W. Simons ◽  
W.D. Nunn

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 10-10
Author(s):  
yanping Hu ◽  
Jie Huang ◽  
Zhongxin Zhou

Abstract Vegetable essential oils, medium-chain fatty acids and organic acids have great potential in the development of alternatives to feeding antibiotics, but many problems in practice limit their application, such as irritating odor, poor water solubility, easy oxidation and volatility. In this study, we found that vegetable essential oils (carcilol, cinnamaldehyde, terptol-4) and medium chain fatty acids (octanoic acid and nonanoic acid) or organic acids (citric acid) had significantly synergistic bactericidal effects on enterotoxigenic Escherichia coli and Salmonella enteribacilli, which are both common pathogens causing piglets diarrhea. Furthermore, we also compared the tolerances of the enterotoxigenic Escherichia coli against plant essential oils (cinnamaldehyde, carcocol, 4- terptol), medium chain fatty acids (octanoic acid and nonylic acid), organic acids (citric acid), and commonly used antibiotic growth promoter (gentamycin sulfate). They were in vitro cultured with ETEC strain for 30 consecutive generations and the minimum inhibitory concentration (MIC) value was detected. The results showed that the MIC values of carvonol, cinnamaldehyde, terpineol-4, octanoic acid, nonylic acid, and citric acid against the ETEC bacteria increased by 5, 3, 1, 0.3, 0.4 and 0 times. But the MIC value of gentamicin against ETEC bacteria increased, in the 20th generation, by more than 64 times. In conclusions, the synergistic bactericidal combination based on the plant essential oil and middle chain fatty acid or organic acid may be a better strategy to replace feeding antibiotics because their synergistic bactericidal combination can greatly reduce the effective concentration of plant essential oil, medium chain fatty acid and organic acid, thus alleviating to a certain extent the shortcomings of unstable effects caused by the irritating odor, the poor water solubility, easy oxidation and volatility. The synergistic bactericidal combination based on plant essential oils are also relatively difficult to cause bacterial tolerance and alleviate bacterial resistance to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document