scholarly journals 310 Using synergistic antibacterial combinations based on vegetable essential oils to replace feeding antibiotics

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 10-10
Author(s):  
yanping Hu ◽  
Jie Huang ◽  
Zhongxin Zhou

Abstract Vegetable essential oils, medium-chain fatty acids and organic acids have great potential in the development of alternatives to feeding antibiotics, but many problems in practice limit their application, such as irritating odor, poor water solubility, easy oxidation and volatility. In this study, we found that vegetable essential oils (carcilol, cinnamaldehyde, terptol-4) and medium chain fatty acids (octanoic acid and nonanoic acid) or organic acids (citric acid) had significantly synergistic bactericidal effects on enterotoxigenic Escherichia coli and Salmonella enteribacilli, which are both common pathogens causing piglets diarrhea. Furthermore, we also compared the tolerances of the enterotoxigenic Escherichia coli against plant essential oils (cinnamaldehyde, carcocol, 4- terptol), medium chain fatty acids (octanoic acid and nonylic acid), organic acids (citric acid), and commonly used antibiotic growth promoter (gentamycin sulfate). They were in vitro cultured with ETEC strain for 30 consecutive generations and the minimum inhibitory concentration (MIC) value was detected. The results showed that the MIC values of carvonol, cinnamaldehyde, terpineol-4, octanoic acid, nonylic acid, and citric acid against the ETEC bacteria increased by 5, 3, 1, 0.3, 0.4 and 0 times. But the MIC value of gentamicin against ETEC bacteria increased, in the 20th generation, by more than 64 times. In conclusions, the synergistic bactericidal combination based on the plant essential oil and middle chain fatty acid or organic acid may be a better strategy to replace feeding antibiotics because their synergistic bactericidal combination can greatly reduce the effective concentration of plant essential oil, medium chain fatty acid and organic acid, thus alleviating to a certain extent the shortcomings of unstable effects caused by the irritating odor, the poor water solubility, easy oxidation and volatility. The synergistic bactericidal combination based on plant essential oils are also relatively difficult to cause bacterial tolerance and alleviate bacterial resistance to a certain extent.

2021 ◽  
Author(s):  
Xiao-Qing Hou ◽  
Dan-Dan Zhang ◽  
Daniel Powell ◽  
Hong-Lei Wang ◽  
Martin N. Andersson ◽  
...  

In insects, airborne chemical signals are mainly detected by two receptor families, odorant receptors (ORs) and ionotropic receptors (IRs). Functions of ORs have been intensively investigated in Diptera and Lepidoptera, while the functions and evolution of the more ancient IR family remain largely unexplored beyond Diptera. Here, we identified a repertoire of 26 IRs from transcriptomes of female and male antennae, and ovipositors in the moth Agrotis segetum. We observed that a large clade formed by IR75p and IR75q expansions is closely related to the acid-sensing IRs identified in Diptera. We functionally assayed each of the five AsegIRs from this clade using Xenopus oocytes and found that two receptors responded to the tested ligands. AsegIR75p.1 responded to several compounds but hexanoic acid was revealed to be the primary ligand, and AsegIR75q.2 responded primarily to octanoic acid, and less so to nonanoic acid. It has been reported that the C6-C10 medium-chain fatty acids repel various insects including many drosophilids and mosquitos. Our GC-EAD recordings showed that C6-C10 medium-chain fatty acids elicited antennal responses of both sexes of A. segetum, while only octanoic acid had repellent effect to the moths in a behavioural assay. In addition, using fluorescence in situ hybridization, we demonstrated that AsegIR75q.2 and its co-receptor AsegIR8a are not located in coeloconic sensilla as found in Drosophila, but in basiconic or trichoid sensilla. These functional data in combination with our phylogenetic analysis suggest that subfunctionalization of the acid-sensing IRs after gene duplication plays an important role in the evolution of ligand specificities of the acid-sensing IRs in Lepidoptera.


2020 ◽  
Vol 21 (3) ◽  
pp. 226-234
Author(s):  
Beatriz Agame-Lagunes ◽  
Monserrat Alegria-Rivadeneyra ◽  
Rodolfo Quintana-Castro ◽  
Cristobal Torres-Palacios ◽  
Peter Grube-Pagola ◽  
...  

Background: Cancer is one of the main causes of death by disease; several alternative treatments have been developed to counteract this condition. Curcumin (diferuloylmethane), extracted from the rhizome of Curcuma longa, has antioxidant, anti-inflammatory, and anti-cancer properties; however, it has low water solubility and poor intestinal absorption. Carrier systems, such as nanoemulsions, can increase the bioavailability of lipophilic bioactive compounds. Objective: To evaluate the effect of curcumin nanoemulsions prepared with lecithin modified with medium-chain fatty acids as an emulsifier, on the expression of the Cdk4, Ccne2, Casp8 and Cldn4 genes involved in the carcinogenesis process in K14E6 transgenic mice. Methods: The emulsifier was prepared by interesterification of medium-chain fatty acids, pure lecithin, and immobilized phospholipase-1 on Duolite A568. An Ultraturrax homogenizer and a Branson Ultrasonic processor were used for the preparation of nano-emulsions, and a Zetasizer evaluated the particle size. qRT-PCR analysis was performed to quantify the cancer-related genes expressed in the K14E6 mice. The development and evolution of skin carcinogenesis were assessed through histological analysis to compare cell morphology. Results: Ca 59% of the MCFA were incorporated via esterification into the PC within 12 hours of the reaction. An emulsifier yield used to formulate the NE of 86% was achieved. Nanoemulsions with a particle size of 44 nm were obtained. The curcumin nano-emulsion group had a 91.81% decrease in the tumorigenesis index and a reduction in tumor area of 89.95% compared to the sick group. Histological analysis showed that the group administered with free curcumin developed a microinvasive squamous cell carcinoma, as opposed to the group with nanoemulsion which presented only a slight inflammation. In gene expression, only a significant difference in Cdk4 was observed in the nanoemulsion group.


2020 ◽  
Author(s):  
Roger A. Cochrane ◽  
Raghavendra G. Amachawadi ◽  
Sarah E. Remfry ◽  
Annie B. Lerner ◽  
Tiruvoor G. Nagaraja ◽  
...  

Abstract Research has demonstrated that medium chain fatty acids (MCFA) can serve as reduction strategies for bacterial and viral pathogens in animal feed and ingredients. However, it is unknown how the type or level of MCFA impact bacteria growth. This can be tested through a minimum inhibitory concentration (MIC) benchtop assay, which identifies the lowest concentration of a chemical that prevents visible growth of a bacterium. The objective of this study was to 1) determine the MCFA MIC of C6:0, C8:0, C10:0, and C12:0 for generic Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella Typhimurium, Campylobacter coli, and Clostridium perfringens; 2) determine the MIC of commercial based MCFA products against the same bacteria; and 3) determine the effect of 2 commercial based MCFA products on the quantification of Enterotoxigenic Escherichia coli. For Exp. 1 and 2, MIC were determined by modified microbroth dilution method using a 96 well microtiter plate with a concentration of 105 CFU/mL for each bacterial strain. For Exp. 3, the two products selected for quantification were mixed with a complete swine diet and inoculated with two concentrations (106 or 102 CFU/g of feed) of a NalR strain of Enterotoxigenic Escherichia coli (ETEC) for bacterial enumeration. From Exp. 1, the MIC of MCFA varied among bacteria species. The lowest MIC of the MCFA was 0.43% of a 1:1:1 blend of C6:0, C8:0, and C10:0 for Campylobacter coli, 0.25% C12:0 for Clostridium perfringens, 0.60% 1:1:1 blend for generic Escherichia coli, 0.53% C6:0 for ETEC, and 0.40% C6:0 for Salmonella Typhimurium. In Exp. 2, products containing high concentrations of C6:0 or C8:0 had lower MIC in gram negative bacteria. In Exp. 3, feed containing either of the commercial based MCFA products reduced (linear, P < 0.05) quantifiable ETEC. Overall, the inhibitory efficacy of MCFA varies among bacteria species. This suggests that MCFA mixtures may provide a wider spectrum of bacterial control. As commercial products containing MCFA become available for livestock, it is important to consider the interaction between MCFA chain length and concentration on the potential to effectively mitigate various feed-based bacteria.


2018 ◽  
Vol 98 (3) ◽  
pp. 433-442 ◽  
Author(s):  
M.M. Hossain ◽  
B. Jayaraman ◽  
S.C. Kim ◽  
K.Y. Lee ◽  
I.H. Kim ◽  
...  

This study evaluated the efficacy of a matrix-coated organic acids and medium-chain fatty acids blend (MCOFA) in growing pigs. Ninety six pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 47.71 ± 3.73 kg were used in a 6 wk experiment. Pigs were allotted to diets containing 0 or 2 g kg−1 of MCOFA, and 0 or 2.5 g kg−1 of antibiotic growth promoters (AGP) according to a 2 × 2 factorial arrangement of treatments. Pigs fed diets supplemented with MCOFA had improved growth efficiency compared with those fed a diet without MCOFA (P < 0.05). Pigs receiving the diets supplemented with both AGP and MCOFA had higher apparent total tract digestibility of crude protein, dry matter, fat, and gross energy (P < 0.05). Pigs fed AGP × MCOFA diet had increased serum urea nitrogen (P < 0.05). Pigs fed diets supplemented with AGP had reduced fecal ammonia (NH3) gas emissions compared with those fed without AGP (P < 0.05). Moreover, pigs fed diets supplemented with MCOFA had reduced fecal NH3 and acetic acid gas emissions compared with those fed without MCOFA (P < 0.05). In conclusion, dietary supplementation with MCOFA improved performance in growing pigs.


2016 ◽  
Vol 79 (1) ◽  
pp. 51-58 ◽  
Author(s):  
G. RASSCHAERT ◽  
J. MICHIELS ◽  
M. TAGLIABUE ◽  
J. MISSOTTEN ◽  
S. DE SMET ◽  
...  

ABSTRACT This study builds on the results of a previous study in which six commercial feed products based on organic acids were evaluated with respect to Salmonella contamination of piglets in an artificially challenged seeder model. In the present study, the efficacy of three of these commercial products was assessed for Salmonella reduction in fattening pigs on one closed farm with a natural high Salmonella prevalence. In each of four fattening compartments, one of the following feed treatments was evaluated during two consecutive fattening rounds: (i) butyric acid (active ingredients at 1.3 kg/ton of feed; supplement A1), (ii) a combination of short-chain organic acids (mixture of free acids and salts) and natural extracts (2.92 kg/ton; supplement A4), (iii) a 1:1 blend of two commercial products consisting of medium-chain fatty acids, lactic acid, and oregano oil (3.71 kg/ton; supplement A5+A6), and (iv) a control feed. On the farm, the Salmonella status of the fattening pigs was evaluated by taking fecal samples twice during the fattening period. At the slaughterhouse, samples were collected from the cecal contents and the ileocecal lymph nodes. Salmonella isolates were serotyped and characterized by pulsed-field gel electrophoresis. This farm had a particularly high number of pigs shedding Salmonella with a wide variety of sero- and pulsotypes. Only the feed blend based on the medium-chain fatty acids was able to significantly reduce Salmonella prevalence both on the farm and at the slaughterhouse. With this combined supplement, the Salmonella reduction in the feces at slaughter age, in cecal contents at slaughter, and the lymph nodes was 50, 36, and 67%, respectively, compared with the control animals. This promising finding calls for further investigation including cost-efficiency of this combined feed product and its effect on the animals.


Sign in / Sign up

Export Citation Format

Share Document