scholarly journals Broadband Radar Invisibility with Time-Dependent Metasurfaces

Author(s):  
Vitali Kozlov ◽  
Dmytro Vovchuk ◽  
Pavel Ginzburg

Abstract Concealing objects from interrogation has been a primary objective since the integration of radars into surveillance systems. Metamaterial-based invisibility cloaking, which was considered a promising solution, did not yet succeed in delivering reliable performance against real radar systems, mainly due to its narrow operational bandwidth. Here we propose an approach, which addresses the issue from a signal-processing standpoint and, as a result, is capable of coping with the vast majority of unclassified radar systems by exploiting vulnerabilities in their design. In particular, we demonstrate complete concealment of a 0.25 square meter moving metal plate from an investigating radar system, operating in a broad frequency range approaching 20% bandwidth around the carrier of 1.5GHz. The key element of the radar countermeasure is a temporally modulated coating. This auxiliary structure is designed to dynamically and controllably adjust the reflected phase of the impinging radar signal, which acquires a user-defined Doppler shift. A special case of interest is imposing a frequency shift that compensates for the real Doppler signatures originating from the motion of the target. In this case the radar will consider the target static, even though it is moving. As a result, the reflected echo will be discarded by the clutter removal filter, which is an inherent part of any modern radar system that is designed to operate in real conditions. This signal-processing loophole allows rendering the target invisible to the radar even though it scatters electromagnetic radiation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Kozlov ◽  
D. Vovchuk ◽  
P. Ginzburg

AbstractConcealing objects from interrogation has been a primary objective since the integration of radars into surveillance systems. Metamaterial-based invisibility cloaking, which was considered a promising solution, did not yet succeed in delivering reliable performance against real radar systems, mainly due to its narrow operational bandwidth. Here we propose an approach, which addresses the issue from a signal-processing standpoint and, as a result, is capable of coping with the vast majority of unclassified radar systems by exploiting vulnerabilities in their design. In particular, we demonstrate complete concealment of a 0.25 square meter moving metal plate from an investigating radar system, operating in a broad frequency range approaching 20% bandwidth around the carrier of 1.5 GHz. The key element of the radar countermeasure is a temporally modulated coating. This auxiliary structure is designed to dynamically and controllably adjust the reflected phase of the impinging radar signal, which acquires a user-defined Doppler shift. A special case of interest is imposing a frequency shift that compensates for the real Doppler signatures originating from the motion of the target. In this case the radar will consider the target static, even though it is moving. As a result, the reflected echo will be discarded by the clutter removal filter, which is an inherent part of any modern radar system that is designed to operate in real conditions. This signal-processing loophole allows rendering the target invisible to the radar even though it scatters electromagnetic radiation.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


2014 ◽  
Vol 556-562 ◽  
pp. 1618-1621
Author(s):  
Jia Liang Fan ◽  
Qiang Yang

Most radar systems based on the structure that contains many DSP chips. The system structure is always complex, and it is difficult to update. Nowadays, multi-core processor develops very fast. Compared with DSP chips, multi-core processor has better performance in signal processing field. In this paper, we present a signal processing architecture which based on multi-core processor. Pulse compression algorithms and PCI-E bus are discussed as two important technologies. Adaptive beamforming test results show that multi-core processor is able to achieve radar signal processing.


2020 ◽  
Author(s):  
Daniel Kastinen ◽  
Johan Kero

Abstract. Meteors and hard targets produce coherent radar echoes. If measured with an interferometric radar system, these echoes can be used to determine the position of the target through finding the Direction Of Arrival (DOA) of the incoming echo onto the radar. If the DOA of meteor trail plasma drifting with the ambient atmosphere is determined, the neutral wind at the observation altitude can be calculated. Specular meteor trail radars have become widespread scientific instruments to study atmospheric dynamics. Meteor head echo measurements also contribute to studies of the atmosphere as the meteoroid input of extraterrestrial material is relevant for a plethora of atmospheric phenomena. Depending on the spatial configuration of radar receiving antennas and their individual gain patterns, there may be an ambiguity problem when determining the DOA of an echo. Radars that are theoretically ambiguity free are known to still have ambiguities that depend on the total radar Signal to Noise Ratio (SNR). In this study we investigate robust methods which are easy to implement to determine the effect of ambiguities on any hard target DOA determination by interferometric radar systems. We apply these methods specifically to simulate four different radar systems measuring meteor head and trail echoes using the multiple signal classification (MUSIC) DOA determination algorithm. The four radar systems are the middle and upper atmosphere (MU) radar in Japan, a generic Jones 2.5λ specular meteor trail radar configuration, the Middle Atmosphere Alomar Radar System (MAARSY) radar in Norway and the The Program of the Antarctic Syowa Mesosphere Stratosphere Troposphere Incoherent Scatter (PANSY) radar in the Antarctic. We also examined a slightly perturbed Jones 2.5λ configuration used as a meteor trail echo receiver for the PANSY radar. All the results are derived from simulations and their purpose is to grant understanding of the behaviour of DOA determination. General results are: there may be a region of SNRs where ambiguities are relevant; Monte Carlo simulation determines this region and if it exists; the MUSIC function peak value is directly correlated with the ambiguous region; a Bayesian method is presented that may be able to analyse echoes from this region; the DOA of echoes with SNRs larger then this region are perfectly determined; the DOA of echoes with SNRs smaller then this region completely fail to be determined; the location of this region is shifted based on the total SNR versus the channel SNR in the direction of the target; asymmetric subgroups can cause ambiguities even for ambiguity free radars. For a DOA located at the zenith, the end of the ambiguous region is located at 17 dB SNR for the MU radar and 3 dB SNR for the PANSY radar. The Jones radars are usually used to measure specular trail echoes far from zenith. The ambiguous region for a DOA at 75.5° elevation and 0° azimuth ends at 12 dB SNR. Using the Bayesian method it may be possible to analyse echoes down to 4 dB SNR for the Jones configuration, given enough data points from the same target. The PANSY meteor trail echo receiver did not deviate significantly from the generic Jones configuration. The MAARSY radar could not resolve arbitrary DOAs sufficiently well to determine a stable region. However, if the DOA search is restricted to 70° elevation or above by assumption, stable DOA determination occurs above 15 dB SNR.


2021 ◽  
Author(s):  
ALESSANDRO DAVOLI ◽  
Giorgio Guerzoni ◽  
Giorgio Matteo Vitetta

<p>Radars are expected to become the main sensors in various civilian applications, ranging from health-care monitoring to autonomous driving. Their success is mainly due to the availability of both low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. An increasingly important role in the field of radar signal processing is played by machine learning and deep learning techniques. Their use has been first taken into consideration in human gesture and motion recognition, and in various healthcare applications. More recently, their exploitation in object detection and localization has been also investigated. The research work accomplished in these areas has raised various technical problems that need to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In this manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being considered for their use in radar systems is provided. Moreover, some relevant open problems and current trends in this research area are analysed. Finally, various numerical results, based on both synthetically generated and experimental datasets, and referring to two different applications are illustrated. These allow readers to assess the efficacy of specific methods and to compare them in terms of accuracy and computational effort.</p>


2021 ◽  
Author(s):  
ALESSANDRO DAVOLI ◽  
Giorgio Guerzoni ◽  
Giorgio Matteo Vitetta

<p>Radars are expected to become the main sensors in various civilian applications, ranging from health-care monitoring to autonomous driving. Their success is mainly due to the availability of both low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. An increasingly important role in the field of radar signal processing is played by machine learning and deep learning techniques. Their use has been first taken into consideration in human gesture and motion recognition, and in various healthcare applications. More recently, their exploitation in object detection and localization has been also investigated. The research work accomplished in these areas has raised various technical problems that need to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In this manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being considered for their use in radar systems is provided. Moreover, some relevant open problems and current trends in this research area are analysed. Finally, various numerical results, based on both synthetically generated and experimental datasets, and referring to two different applications are illustrated. These allow readers to assess the efficacy of specific methods and to compare them in terms of accuracy and computational effort.</p>


2005 ◽  
Vol 23 (1) ◽  
pp. 109-121 ◽  
Author(s):  
T. Grydeland ◽  
F. D. Lind ◽  
P. J. Erickson ◽  
J. M. Holt

Abstract. Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correlation-based interferometry. The components have been used to implement the signal processing necessary for incoherent scatter radar signal reception and processing as part of the latest version of the Millstone Hill Data Acquisition System (MIDAS-W). Several hardware realizations with varying capabilities have been created, and these have been used successfully with different radars. We discuss the signal processing components in detail, describe the software patterns in which they are used, and show example data from the Millstone Hill, EISCAT Svalbard, and SOUSY Svalbard radars.


2021 ◽  
Vol 20 (1) ◽  
pp. 67-79
Author(s):  
Ádám Kiss ◽  
Levente Dudás

Passive radars are popular because without the expensive, high-power-rated RF components, they are much cheaper than the active ones, nevertheless, they are much harder to detect from their electromagnetic emission. Passive radars produce so-called RV matrices in an intermediate signal processing step. Although accurate RV matrices are found in DVBT-based passive radars, the characteristics of the FM signals are not always suitable for this purpose. In those situations, further signal processing causes false alarms and unreliable plots, misleads the tracker, and consumes power for processing unnecessarily, which matters in portable setups. Passive radars also come with the advantage of a possible MIMO setup, when multiple signal sources (broadcast services for example) are reflected by multiple targets to the receiver unit. One common case is the stealth aircraft’s which form is designed to reflect the radar signal away from the active radar, but it could also reflect the signals of the available broadcast channels. Only one of these reflected signals could reveal the position of the target.


Author(s):  
A.V. Bogdanov ◽  
D.V. Zakomoldin ◽  
I.V. Kochetov ◽  
S.I. Akimov

The article proposes methods of counteraction to the enemy's electronic reconnaissance means, both for a duel situation and for group actions of fighters, analyzes their advantages and disadvantages, identifies limitations on their use. The physical meaning of these methods is to ensure the secrecy of the operation of on-board radar systems for radiation, due to the variation in the energy potential of the station, in particular, the time of coherent energy accumulation in narrow-band Doppler filters when receiving signals reflected from air targets and the radiation power of the transmitter of the on-board radar system when forming sounding radar signal packs. In the article, along with the methods of ensuring the secrecy of the operation of onboard radar systems of fighters, which make it possible to carry out technical measures only after radar contact with an air target equipped with electronic reconnaissance means, which leads to a decrease in their effectiveness, methods for controlling the secrecy of the operation of onboard radar systems of fighters are additionally given, allowing to provide stealth with a given probability in the dynamics of the approach of a fighter with its emitting airborne radar system with an air target, equipped with electronic reconnaissance means. In addition, it should be noted the method of managing the energy secrecy of airborne radar systems during group actions of fighters, within the framework of the development of which the possibility of summing up the powers emitted by the transmitters of the onboard radar systems of fighters when they work together for radiation in the position of conducting electronic reconnaissance is taken into account. Implementation of the developed methods will allow: to increase the survivability of fighters, and to an increase in this indicator, both the ensured secrecy of the operation of onboard radar systems of fighters for radiation and the implementation of the multi-position principle of building radar systems, given in the method of stealth control of the onboard radar system of fighters during group actions of fighters. to expand the combat capabilities of fighters, due to the fact that the covert operation of the onboard radar systems of fighters for radiation excludes the possibility of reconnaissance of the parameters of the sounding signal and, as a result, the possibility of setting active interference is excluded.


Sign in / Sign up

Export Citation Format

Share Document