scholarly journals Light-powered Self-excited Coupled Oscillators in Huygens ’ Synchrony

Author(s):  
Quanbao Cheng ◽  
Kai Li

Abstract Self-excited motions have the advantages of actively collecting energy from the environment, autonomy, making equipment portable and so on, and a great number of self-excited motion modes have recently been developed which greatly expand the application in active machines. However, there are few studies on the synchronization and group behaviors of self-excited coupled oscillators, which are common in nature. Based on light-powered self-excited oscillator composed of liquid crystal elastomer (LCE) bars, the synchronization of two self-excited coupled oscillators is theoretically studied. Numerical calculations show that self-excited oscillations of the system have two synchronization modes: in-phase mode and anti-phase mode. The time histories of various quantities are calculated to elucidate the mechanism of self-excited oscillation and synchronization. Furthermore, the effects of initial conditions and interaction on the two synchronization modes of the self-excited oscillation are investigated extensively. For strong interactions, the system always develops into in-phase synchronization mode, while for weak interaction, the system will evolve into anti-phase synchronization mode. Meanwhile, the initial condition generally does not affect the synchronization mode and its amplitude. This work will deepen people's understanding of synchronization behaviors of self-excited coupled oscillators, and provide promising applications in energy harvesting, signal monitoring, soft robotics and medical equipment.

2016 ◽  
Vol 94 (11) ◽  
pp. 1158-1166
Author(s):  
Liming Wang

The effects of the initial conditions and the coupling competition modes on the dynamic behaviors of coupled non-identical fractional-order bistable oscillators are investigated intensively and the various phenomena are explored. The coupled system can be controlled to form chaos synchronization, chaos anti-phase synchronization, amplitude death, oscillation death, etc., by setting the initial conditions or selecting the coupling competition modes. Depending on whether the arbitrary initial conditions can let two coupled oscillators stop oscillating, the dynamic behaviors of the coupled system are further classified into three types, that is, both of oscillators stop oscillating, only one oscillator stops oscillating, and none of oscillators stop oscillating. Based on the principle of Monte Carlo method, the percentages of three types of dynamic behaviors are calculated for the different coupling competition modes and the dynamic behaviors of the coupled system are characterized from the perspective of statistics. Moreover, the mechanism behind the various phenomena is explained in detail by the concept of boundary layer and the optimum coupling competition modes are found.


2007 ◽  
Vol 17 (07) ◽  
pp. 2517-2530 ◽  
Author(s):  
OLEKSANDR V. POPOVYCH ◽  
VALERII KRACHKOVSKYI ◽  
PETER A. TASS

We present a detailed bifurcation analysis of desynchronization transitions in a system of two coupled phase oscillators with delay. The coupling between the oscillators combines a delayed self-feedback of each oscillator with an instantaneous mutual interaction. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. We show that an increase of the coupling strength between oscillators may lead to a loss of synchronization. Intriguingly, the delay has a twofold influence on the oscillations: synchronizing for small and intermediate coupling strength and desynchronizing if the coupling strength exceeds a certain threshold value. We show that the desynchronization transition has the form of a crisis bifurcation of a chaotic attractor of chaotic phase synchronization. This study contributes to a better understanding of the impact of time delay on interacting oscillators.


2009 ◽  
Vol 23 (30) ◽  
pp. 5715-5726
Author(s):  
YONG LIU

Phase synchronization between linearly and nonlinearly coupled systems with internal resonance is investigated in this paper. By introducing the conception of phase for a chaotic motion, it demonstrates that the detuning parameter σ between the two natural frequencies ω1and ω2affects phase dynamics, and with the increase in the linear coupling strength, the effect of phase synchronization between two sub-systems was enhanced, while increased firstly, and then decayed as nonlinear coupling strength increases. Further investigation reveals that the transition of phase states between the two oscillators are related to the critical changes of the Lyapunov exponents, which can also be explained by the diffuse clouds.


2001 ◽  
Vol 11 (06) ◽  
pp. 1723-1735 ◽  
Author(s):  
GUO-QUN ZHONG ◽  
KIM-FUNG MAN ◽  
KING-TIM KO

In this paper a variety of uncertainty phenomena in chaos synchronization, which are caused by the sensitive dependence on initial conditions and coupling strength, are numerically investigated. Two identical Chua's circuits are considered for both mutually- and unidirectionally-coupled systems. It is found that initial states of the system play an important role in chaos synchronization. Depending on initial conditions, distinct behaviors, such as in-phase synchronization, anti-phase synchronization, oscillation-quenching, and bubbling of attractors, may occur. Based on the findings, we clarify that the systems, which satisfy the standard synchronization criterion, do not necessarily operate in a synchronization regime.


2006 ◽  
Vol 16 (07) ◽  
pp. 1961-1976 ◽  
Author(s):  
I. M. KYPRIANIDIS ◽  
A. N. BOGIATZI ◽  
M. PAPADOPOULOU ◽  
I. N. STOUBOULOS ◽  
G. N. BOGIATZIS ◽  
...  

In this paper, we have studied the dynamics of two identical resistively coupled Chua's canonical circuits and have found that it is strongly affected by initial conditions, coupling strength and the presence of coexisting attractors. Depending on the coupling variable, chaotic synchronization has been observed both numerically and experimentally. Anti-phase synchronization has also been studied numerically clarifying some aspects of uncertainty in chaos synchronization.


2022 ◽  
Vol 163 ◽  
pp. 108140
Author(s):  
Xiaodong Liang ◽  
Zengfu Chen ◽  
Lei Zhu ◽  
Kai Li

Pramana ◽  
2008 ◽  
Vol 70 (6) ◽  
pp. 1143-1151 ◽  
Author(s):  
P. Muruganandam ◽  
F. F. Ferreira ◽  
H. F. El-Nashar ◽  
H. A. Cerdeira

2014 ◽  
Vol 24 (06) ◽  
pp. 1450020 ◽  
Author(s):  
STILIYAN KALITZIN ◽  
MARCUS KOPPERT ◽  
GEORGE PETKOV ◽  
FERNANDO LOPES DA SILVA

In our previous studies, we showed that the both realistic and analytical computational models of neural dynamics can display multiple sustained states (attractors) for the same values of model parameters. Some of these states can represent normal activity while other, of oscillatory nature, may represent epileptic types of activity. We also showed that a simplified, analytical model can mimic this type of behavior and can be used instead of the realistic model for large scale simulations. The primary objective of the present work is to further explore the phenomenon of multiple stable states, co-existing in the same operational model, or phase space, in systems consisting of large number of interconnected basic units. As a second goal, we aim to specify the optimal method for state control of the system based on inducing state transitions using appropriate external stimulus. We use here interconnected model units that represent the behavior of neuronal populations as an effective dynamic system. The model unit is an analytical model (S. Kalitzin et al., Epilepsy Behav. 22 (2011) S102–S109) and does not correspond directly to realistic neuronal processes (excitatory–inhibitory synaptic interactions, action potential generation). For certain parameter choices however it displays bistable dynamics imitating the behavior of realistic neural mass models. To analyze the collective behavior of the system we applied phase synchronization analysis (PSA), principal component analysis (PCA) and stability analysis using Lyapunov exponent (LE) estimation. We obtained a large variety of stable states with different dynamic characteristics, oscillatory modes and phase relations between the units. These states can be initiated by appropriate initial conditions; transitions between them can be induced stochastically by fluctuating variables (noise) or by specific inputs. We propose a method for optimal reactive control, allowing forced transitions from one state (attractor) into another.


1996 ◽  
Vol 23 (4) ◽  
pp. 926-939 ◽  
Author(s):  
D. A. Barrett ◽  
T. M. Hrudey

A series of tests were performed on a bridge crane to investigate how the peak dynamic response during hoisting is affected by the stiffness of the crane structure, the inertial properties of the crane structure, the stiffness of the cable-sling system, the payload mass, and the initial conditions for the hoisting operation. These factors were varied in the test program and time histories were obtained for displacements, accelerations, cable tension, bridge bending moment, and end truck wheel reactions. Values for the dynamic ratio, defined as peak dynamic value over corresponding static value, are presented for displacements, bridge bending moment, and end truck wheel reactions. A two degree of freedom analytical model is presented, and theoretical values for the dynamic ratio are calculated as a function of three dimensionless parameters that characterize the crane and payload system. The predicted dynamic ratios are found to be conservative when compared with the test results. A general format is suggested for dynamic factors in design standards that apply to bridge cranes with constant speed motors. Key words: bridge crane, hoist, dynamic load.


2021 ◽  
Author(s):  
Supravat Dey ◽  
A B M Shamim Ul Hasan ◽  
Abhyudai Singh ◽  
Hiroyuki Kurata

Inside living cells, proteins or mRNA can show oscillations even without a periodic driving force. Such genetic oscillations are precise timekeepers for cell-cycle regulations, pattern formation during embryonic development in higher animals, and daily cycle maintenance in most organisms. The synchronization between oscillations in adjacent cells happens via intercellular coupling, which is essential for periodic segmentation formation in vertebrates and other biological processes. While molecular mechanisms of generating sustained oscillations are quite well understood, how do simple intercellular coupling produces robust synchronizations are still poorly understood? To address this question, we investigate two models of coupled gene oscillators - activator-based coupled oscillators (ACO) and repressor-based coupled oscillators (RCO) models. In our study, a single autonomous oscillator (that operates in a single cell) is based on a negative feedback, which is delayed by intracellular dynamics of an intermediate species. For the ACO model (RCO), the repressor protein of one cell activates (represses) the production of another protein in the neighbouring cell after a intercellular time delay. We investigate the coupled models in the presence of intrinsic noise due to the inherent stochasticity of the biochemical reactions. We analyze the collective oscillations from stochastic trajectories in the presence and absence of explicit coupling delay and make careful comparison between two models. Our results show no clear synchronizations in the ACO model when the coupling time delay is zero. However, a non-zero coupling delay can lead to anti-phase synchronizations in ACO. Interestingly, the RCO model shows robust in-phase synchronizations in the presence and absence of the coupling time delay. Our results suggest that the naturally occurring intercellular couplings might be based on repression rather than activation where in-phase synchronization is crucial.


Sign in / Sign up

Export Citation Format

Share Document