scholarly journals Forever young white dwarfs: when stellar ageing stops

2020 ◽  
Author(s):  
Maria Camisassa ◽  
Leandro Althaus ◽  
Santiago Torres ◽  
Alejandro Córsico ◽  
Sihao Cheng ◽  
...  

Abstract White dwarf stars are the most common end point of stellar evolution. In particular, ultra-massive white dwarfs are expected to harbour oxygen-neon (ONe) cores as a result of single standard stellar evolution. However, a fraction of them could have carbon-oxygen (CO) cores and be born as a result of merger events. Recent observations provided by Gaia space mission, indicate that a fraction of the ultra-massive white dwarfs experience a strong delay in their cooling, which cannot be attributed only to the occurrence of crystallization, thus requiring an unknown energy source able to prolong their life for long periods of time. Here, we show that the energy released by 22Ne sedimentation in ultra-massive white dwarfs with CO cores is at the root of the long cooling delay of these stars. Our results provide solid sustain to the existence of CO-core ultra-massive white dwarfs and the occurrence of stellar mergers.

1993 ◽  
Vol 139 ◽  
pp. 116-116
Author(s):  
P.A. Bradley ◽  
M.A. Wood

AbstractWe present the results of a parametric survey of evolutionary models of compositionally stratified white dwarfs with helium surface layers (DB white dwarfs). Because white dwarfs are the most common final end state of stellar evolution, determining their internal structure will offer us many clues about stellar evolution, the physics of matter under extreme conditions, plus the history of star formation and age of the local Galactic disk. As a first step towards determining the internal structure of DB white dwarf stars, we provide a comprehensive set of theoretical g-mode pulsation periods for comparison to observations.Because DB white dwarfs have a layered structure consisting of a helium layer overlying the carbon/oxygen core, some modes will have the same wavelength as the thickness of the helium layer, allowing a resonance to form. This resonance is called mode trapping (see Brassard et al. 1992 and references therein) and has directly observable consequences, because modes at or near the resonance have eigenfunctions and pulsation periods that are similar to each other. This results in much smaller period spacings between consecutive overtone modes of the same spherical harmonic index than the uniform period spacings seen between non-trapped modes. We demonstrate with an example how one can use the distribution of pulsation periods to determine the total stellar mass, the mass of the helium surface layer, and the extent of the helium/carbon and carbon/oxygen transition zones. With these tools, we have the prospect of being able to determine the structure of the observed DBV white dwarfs, once the requisite observations become available.We are grateful to C.J. Hansen, S.D. Kawaler, R.E. Nather, and D.E. Winget for their encouragement and many discussions. This research was supported by the National Science Foundation under grants 85-52457 and 90-14655 through the University of Texas and McDonald Observatory.


2019 ◽  
Vol 15 (S357) ◽  
pp. 93-106
Author(s):  
Alejandro H. Córsico

AbstractThe vast majority of stars that populate the Universe will end their evolution as white-dwarf stars. Applications of white dwarfs include cosmochronology, evolution of planetary systems, and also as laboratories to study non-standard physics and crystallization. In addition to the knowledge of their surface properties from spectroscopy combined with model atmospheres, the global pulsations that they exhibit during several phases of their evolution allow spying on the deep interior of these stars. Indeed, by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable white dwarfs and the periods predicted by representative theoretical models, we can infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile and strength of magnetic fields. In this article, we review the current state of the area, emphasizing the latest findings provided by space-mission data.


1993 ◽  
Vol 139 ◽  
pp. 117-119
Author(s):  
P.A. Bradley

AbstractWhite dwarfs are the final end state for the majority of stars, and hold clues to help solve many current pressing astrophysical problems. We can perform asteroseismology on the pulsating white dwarfs to better understand their internal structure and input physics, paving the way to a better understanding of astrophysics, stellar evolution, and the history of our Galaxy. I describe briefly the potential of asteroseismology by using it to infer the internal structure of PG1159-035.


2017 ◽  
Vol 45 ◽  
pp. 1760023
Author(s):  
S. O. Kepler ◽  
Alejandra Daniela Romero ◽  
Ingrid Pelisoli ◽  
Gustavo Ourique

White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5[Formula: see text]000 to 39[Formula: see text]000. This number includes only white dwarf stars with [Formula: see text], i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.


2009 ◽  
Vol 5 (H15) ◽  
pp. 370-370
Author(s):  
A. Romero ◽  
A. H. Córsico ◽  
L. G. Althaus ◽  
E. García-Berro

Hot DQ white dwarfs constitute a new class of white dwarf stars, uncovered recently within the framework of SDSS project. There exist nine of them, out of a total of several thousands white dwarfs spectroscopically identified. Recently, three hot DQ white dwarfs have been reported to exhibit photometric variability with periods compatible with pulsation g-modes. In this contribution, we presented the results of a non-adiabatic pulsation analysis of the recently discovered carbon-rich hot DQ white dwarf stars. Our study relies on the full evolutionary models of hot DQ white dwarfs recently developed by Althaus et al. (2009), that consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Specifically, we performed a stability analysis on white dwarf models from stages before the blue edge of the DBV instability strip (Teff ≈ 30000 K) until the domain of the hot DQ white dwarfs (18000-24000 K), including the transition DB→hot DQ white dwarf. We explore evolutionary models with M*= 0.585M⊙ and M* = 0.87M⊙, and two values of thickness of the He-rich envelope (MHe = 2 × 10−7M* and MHe = 10−8M*).


1992 ◽  
Vol 9 ◽  
pp. 643-645
Author(s):  
G. Fontaine ◽  
F. Wesemael

AbstractIt is generally believed that the immediate progenitors of most white dwarfs are nuclei of planetary nebulae, themselves the products of intermediate- and low-mass main sequence evolution. Stars that begin their lifes with masses less than about 7-8 M⊙ (i.e., the vast majority of them) are expected to become white dwarfs. Among those which have already had the time to become white dwarfs since the formation of the Galaxy, a majority have burnt hydrogen and helium in their interiors. Consequently, most of the mass of a typical white dwarf is contained in a core made of the products of helium burning, mostly carbon and oxygen. The exact proportions of C and 0 are unknown because of uncertainties in the nuclear rates of helium burning.


2003 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Handler

AbstractI have collected all the WET archival data on the pulsating DB white dwarf stars (DBVs) and re-reduced them. In addition, the WET has recently observed three DBVs. Preliminary results on PG 1115+158, PG 1351+489, KUV 05134+2605, PG 1654+160 and PG 1456+103 are presented, and the future use of the data is outlined.


1978 ◽  
Vol 80 ◽  
pp. 117-120
Author(s):  
Harry L. Shipman

The status of determinations of white dwarf radii by model atmosphere methods is reviewed in this paper. Details will appear elsewhere (Shipman 1978). In brief, the results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R⊙; (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R⊙, indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R⊙.


1971 ◽  
Vol 42 ◽  
pp. 67-76 ◽  
Author(s):  
J. B. Oke ◽  
H. L. Shipman

White dwarf stars are among the most challenging and interesting objects which can be studied. Because they represent the interiors of highly-evolved stars, the chemical composition can be enormously variable from object to object. Furthermore, because of the very large gravities, the composition of the atmosphere may be very different from that in the interior. The theory of the degenerate interior provides a relation among mass, radius and chemical composition. Since temperatures, effective gravities, and redshifts can, for certain stars, provide further relations between mass and radius, one can hope to make checks on the theory which are not possible with ordinary stars.


1989 ◽  
Vol 114 ◽  
pp. 384-387
Author(s):  
James Liebert ◽  
F. Wesemael ◽  
D. Husfeld ◽  
R. Wehrse ◽  
S. G. Starrfield ◽  
...  

First reported at the IAU Colloquium No. 53 on White Dwarfs (McGraw et al. 1979), PG 1159-035 (GW Vir) is the prototype of a new class of very hot, pulsating, pre-white dwarf stars. It shows complicated, nonradial pulsation modes which have been studied exhaustively, both observationally and theoretically. The effective temperature has been crudely estimated as 100,000 K with log g ~ 7 (Wesemael, Green and Liebert 1985, hereafter WGL).


Sign in / Sign up

Export Citation Format

Share Document