Dapagliflozin activates AMPK to attenuate cardiac dysfunction and oxidative stress under hypoxia/reoxygenation-caused damage

2020 ◽  
Author(s):  
Kun-Ling Tsai ◽  
Pei-Ling Hsieh ◽  
Wan-Ching Chou ◽  
Hui-Ching Cheng ◽  
Yu-Ting Huang ◽  
...  

Abstract Background: Emerging evidence demonstrated Dapagliflozin (DAPA), an inhibitor of type II sodium-glucose cotransporter-2, prevented various cardiovascular events. However, the detailed mechanisms underlying its cardioprotective properties remained largely unknown. In the present study, we sought to investigate the effects of DAPA on the cardiac ischemia/reperfusion (I/R) injury and study the mechanisms of DAPA-provided cardioprotection.Methods: For in intro studies, cardiac myoblast H9c2 cells were exposed to hypoxia with no-glucose medium for 1 hr than followed a reoxygenation with high-glucose medium for 4 hr. DAPA was treated before hypoxia/reoxygenation (H/R) exposure. For in vivo investigations, I/R was instigated in Sprague-Dawley (SD) rats using ligation of the left anterior descending coronary artery (LAD). DAPA was given daily by gavage for 5 days before I/R induction.Results: Results from in vitro experiments showed that DAPA induced the phosphorylation of adenosine 5'-monophosphate activated protein kinase (AMPK), resulting in the downregulation of phosphorylated protein kinase C (PKC) in the cardiac myoblast H9c2 cells following H/R condition. We demonstrated that DAPA treatment diminished the H/R-elicited oxidative stress via the AMPK/ PKC/ NADPH oxidase (Nox) pathway. In addition, DAPA prevented the H/R-induced abnormality of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) expression, mitochondrial membrane potential, and mitochondrial DNA copy number through AMPK/ PKC/ Nox signaling. Besides, DAPA reversed the apoptosis-associated changes, including H/R-suppressed Bcl-2 and H/R-induced expression of phosphorylated p53, Bax cytochrome c, and activated caspase 3 via AMPK/ PKC/ Nox/ PGC-1α signaling. Furthermore, we demonstrated that DAPA improved the I/R-induced cardiac dysfunction by echocardiography and abrogated the I/R-elicited apoptotic cells by terminal deoxynucleotidyl transferase dUTP nick end labeling assay in the myocardium of rats. Also, the administration of DAPA mitigated the production of two myocardial infarction markers, creatine phosphokinase isoenzymes and lactate dehydrogenase.Conclusion: In conclusion, our data suggested that DAPA treatment holds the potential to ameliorate the I/R-elicited oxidative stress and the following cardiac apoptosis via AMPK/ PKC/ Nox/ PGC-1α signaling, which attenuates the cardiac dysfunction caused by I/R injury.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kun-Ling Tsai ◽  
Pei-Ling Hsieh ◽  
Wan-Ching Chou ◽  
Hui-Ching Cheng ◽  
Yu-Ting Huang ◽  
...  

Abstract Background Emerging evidence demonstrated dapagliflozin (DAPA), a sodium-glucose cotransporter 2 inhibitor, prevented various cardiovascular events. However, the detailed mechanisms underlying its cardioprotective properties remained largely unknown. Results In the present study, we sought to investigate the effects of DAPA on the cardiac ischemia/reperfusion (I/R) injury. Results from in vitro experiments showed that DAPA induced the phosphorylation of AMPK, resulting in the downregulation of PKC in the cardiac myoblast H9c2 cells following hypoxia/reoxygenation (H/R) condition. We demonstrated that DAPA treatment diminished the H/R-elicited oxidative stress via the AMPK/ PKC/ NADPH oxidase pathway. In addition, DAPA prevented the H/R-induced abnormality of PGC-1α expression, mitochondrial membrane potential, and mitochondrial DNA copy number through AMPK/ PKC/ NADPH oxidase signaling. Besides, DAPA reversed the H/R-induced apoptosis. Furthermore, we demonstrated that DAPA improved the I/R-induced cardiac dysfunction by echocardiography and abrogated the I/R-elicited apoptosis in the myocardium of rats. Also, the administration of DAPA mitigated the production of myocardial infarction markers. Conclusions In conclusion, our data suggested that DAPA treatment holds the potential to ameliorate the I/R-elicited oxidative stress and the following cardiac apoptosis via modulation of AMPK, which attenuates the cardiac dysfunction caused by I/R injury.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Sumin Gao ◽  
Rong Wang ◽  
Siwei Dong ◽  
Jing Wu ◽  
Bartłomiej Perek ◽  
...  

The cardioprotective effect of sevoflurane postconditioning (SPostC) is lost in diabetes that is associated with cardiac phosphatase and tensin homologue on chromosome 10 (PTEN) activation and phosphoinositide 3-kinase (PI3K)/Akt inactivation. T-LAK cell-originated protein kinase (TOPK), a mitogen-activated protein kinase- (MAPKK-) like serine/threonine kinase, has been shown to inactivate PTEN (phosphorylated status), which in turn activates the PI3K/Akt signaling (phosphorylated status). However, the functions of TOPK and molecular mechanism underlying SPostC cardioprotection in nondiabetes but not in diabetes remain unknown. We presumed that SPostC exerts cardioprotective effects by activating PTEN/PI3K/Akt through TOPK in nondiabetes and that impairment of TOPK/PTEN/Akt blocks diabetic heart sensitivity to SPostC. We found that in the nondiabetic C57BL/6 mice, SPostC significantly attenuated postischemic infarct size, oxidative stress, and myocardial apoptosis that was accompanied with enhanced p-TOPK, p-PTEN, and p-Akt. These beneficial effects of SPostC were abolished by either TOPK kinase inhibitor HI-TOPK-032 or PI3K/Akt inhibitor LY294002. Similarly, SPostC remarkably attenuated hypoxia/reoxygenation-induced cardiomyocyte damage and oxidative stress accompanied with increased p-TOPK, p-PTEN, and p-Akt in H9c2 cells exposed to normal glucose, which were canceled by either TOPK inhibition or Akt inhibition. However, either in streptozotocin-induced diabetic mice or in H9c2 cells exposed to high glucose, the cardioprotective effect of SPostC was canceled, accompanied by increased oxidative stress, decreased TOPK phosphorylation, and impaired PTEN/PI3K/Akt signaling. In addition, TOPK overexpression restored posthypoxic p-PTEN and p-Akt and decreased cell death and oxidative stress in H9c2 cells exposed to high glucose, which was blocked by PI3K/Akt inhibition. In summary, SPostC prevented myocardial ischemia/reperfusion injury possibly through TOPK-mediated PTEN/PI3K/Akt activation and impaired activation of this signaling pathway may be responsible for the loss of SPostC cardioprotection by SPostC in diabetes.


2021 ◽  
Vol 30 ◽  
pp. 096368972110332
Author(s):  
Weifeng Jiang ◽  
Jungang Song ◽  
Suitao Zhang ◽  
Yanyan Ye ◽  
Jun Wang ◽  
...  

Myocardial infarction (MI) is identified as the myocardial necrosis due to myocardial ischemia/reperfusion (I/R) injury and remains a leading cause of mortality. C1q/TNF-related protein 13 (CTRP13) is a member of CTRP family that has been found to be involved in coronary artery disease (CAD). However, the role of CTRP13 in MI remains unclear. We aimed to explore the functional role of CTRP13 in H9c2 cells exposed to hypoxia/reoxygenation (H/R). Our results demonstrated that H/R stimulation significantly decreased the expression of CTRP13 in H9c2 cells. H/R-induced an increase in ROS production and reductions in activities of SOD and CAT were prevented by CTRP13 overexpression but were aggravated by CTRP13 silencing. Moreover, CTRP13 overexpression could reverse the inductive effect of H/R on caspase-3 activity and bax expression, as well as the inhibitory effect of H/R on bcl-2 expression in H9c2 cells. However, CTRP13 silencing presented opposite effects with CTRP13 overexpression. Furthermore, CTRP13 overexpression enhanced the H/R-stimulated the expression levels of p-AMPK and nuclear Nrf2, and Nrf2 transcriptional activity. However, inhibition of AMPK reversed the CTRP13-mediated activation of Nrf2/ARE signaling and the cardiac-protective effect in H/R-exposed H9c2 cells. Additionally, silencing of Nrf2 reversed the protective effects of CTRP13 against H/R-stimulated oxidative stress and apoptosis in H9c2 cells. Finally, recombinant CTRP13 protein attenuated myocardial I/R-induced injury in rats. Taken together, these findings indicated that CTRP13 protected H9c2 cells from H/R-stimulated oxidative stress and apoptosis via regulating the AMPK/Nrf2/ARE signaling pathway. Our results provided evidence for the therapeutic potential of CTRP13 in myocardial I/R injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Qihui Jin ◽  
Yanhong Jiang ◽  
Lizhong Fu ◽  
Yanqiu Zheng ◽  
Yuxia Ding ◽  
...  

Myocardial infarction and following reperfusion therapy-induced myocardial ischemia/reperfusion (I/R) injury have been recognized as an important subject of cardiovascular disease with high mortality. As the antiarrhythmic agent, Wenxin Granule (WXG) is widely used to arrhythmia and heart failure. In our pilot study, we found the antioxidative potential of WXG in the treatment of myocardial I/R. This study is aimed at investigating whether WXG could treat cardiomyocyte hypoxia/reoxygenation (H/R) injury by inhibiting oxidative stress in mitochondria. The H9c2 cardiomyocyte cell line was subject to H/R stimuli to mimic I/R injury in vitro. WXG was added to the culture medium 24 h before H/R exposing as pretreatment. Protein kinase C-δ (PKC-δ) inhibitor rottlerin or PKC-δ lentivirus vectors were conducted on H9c2 cells to downregulate or overexpress PKC-δ protein. Then, the cell viability, oxidative stress levels, intracellular and mitochondrial ROS levels, mitochondrial function, and apoptosis index were analyzed. In addition, PKC-δ protein expression in each group was verified by western blot analysis. Compared with the control group, the PKC-δ protein level was significantly increased in the H/R group, which was remarkably improved by WXG or rottlerin. PKC-δ lentivirus vector-mediated PKC-δ overexpression was not reduced by WXG. WXG significantly improved H/R-induced cell injury, lower levels of SOD and GSH/GSSG ratio, higher levels of MDA, intracellular and mitochondrial ROS content, mitochondrial membrane potential and ATP loss, mitochondrial permeability transition pore opening, NOX2 activation, cytochrome C release, Bax/Bcl-2 ratio and cleaved caspase-3 increasing, and cell apoptosis. Similar findings were obtained from rottlerin treatment. However, the protective effects of WXG were abolished by PKC-δ overexpression, indicating that PKC-δ was a potential target of WXG treatment. Our findings demonstrated a novel mechanism by which WXG attenuated oxidative stress and mitochondrial dysfunction of H9c2 cells induced by H/R stimulation via inhibitory regulation of PKC-δ/NOX2/ROS signaling.


2020 ◽  
Author(s):  
Zhiru Ge ◽  
Chenjun Zhang ◽  
Jie Lin ◽  
Hong Pan ◽  
Zijun Lin ◽  
...  

Abstract Background: Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide, and its main pathophysiological mechanism is myocardial ischemia/reperfusion (I/R) injury. TNC is an extracellular matrix glycoprotein, and high TNC expression was associated with MI and ventricular remodeling. The present study aimed to investigate the effect and the underlying mechanisms of TNC on myocardial I/R injury.Methods: Cardiomyocyte H9c2 cells was used to establish an in vitro hypoxia/reoxygenation (H/R) model, which were under hypoxia for 4 h and reoxygenation for 12 h. TNC was silenced by small interfering RNA (siRNA) in H9c2 cells.Results: TNC mRNA and protein expressions were increased by H/R. TNC knockdown by siRNA improved the cell viability in H/R-stimulated H9c2 cells. TNC knockdown reversed the H/R-induced increase in the apoptosis, as evidenced by reduced TUNEL+ cells and caspase-3 activity, and inhibited oxidative stress and inflammatory cytokine production. TNC silencing inhibits TLR4 mRNA and protein expressions and NF-kappa B signals, as evidenced by reduced nuclear NF-κB p65 and increased cytoplasmic I-κBα in H/R-stimulated H9c2 cells. All these cardioprotection against H/R by siTNC was reversed by TLR4 overexpression.Conclusions: TNC silencing prevents H/R-induced injury by inhibiting apoptosis and oxidative stress by inhibition of TLR4-NF-κB pathway.


2021 ◽  
Author(s):  
Xiang Xie ◽  
Zhongbao Zhao ◽  
Danyong Liu ◽  
Dengwen Zhang ◽  
Yi He ◽  
...  

Abstract Background Reduced levels of myocardial STAT3 activity in diabetic hearts may contribute to the increased susceptibility to ischemia-reperfusion injury (I/RI). The protein mammalian target of rapamycin (mTOR) can regulate metabolism and cell processes and plays major roles in the dynamics of I/RI. However, the role of mTOR in regulation of myocardial STAT3 and thereby affect myocardial I/RI in diabetes at relatively late stages of the disease is unknown. Methods Diabetes was induced by Streptozotocin in Sprague-Dawley rats. Myocardial I/RI was achieved with coronary occlusion for 30 minutes and reperfusion for 2 hours in absence or presence of the mTOR inhibitor rapamycin. In vitro cardiomyocyte hypoxia/re-oxygenation (H/R) was established within H9C2 cells. Results In diabetic rats, the levels of troponin-I (Tn-I), lipid peroxidation products 15-F2t-Isoprostane (15-F2t-Iso) and MDA, and the expression of protein mTOR were all significantly increased,and SOD releasing, the expression of protein phosphorylation of STAT3(p-STAT3-Ser727) were both significantly decreased compared to non-diabetic rats. Myocardial I/RI significantly increased the infract size (IS) and further increased the mTOR activation and decreased p-STAT3-Ser727 compared to diabetic rats. The selective mTOR inhibitor rapamycin reversed these changes and conferred cardioprotective effect. In H9C2 cells, high glucose (HG) significantly increased lactic dehydrogenase (LDH) release, apoptosis cells, ROS release, activation of mTOR, and decreased p-STAT3-Ser727. H/R further increased cellular injury, mTOR knock-down significantly reduced H/R injury. Conclusion Myocardial mTOR was enhanced in diabetes and contributed to I/RI. mTOR inhibition attenuated myocardial I/RI through increasing p-STAT3-Ser727.


2011 ◽  
Vol 301 (2) ◽  
pp. F364-F370 ◽  
Author(s):  
Anees Ahmad Banday ◽  
Mustafa F. Lokhandwala

Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na+/H+ exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was designed to identify the signaling pathways responsible for ANG II-mediated biphasic regulation of proximal tubular NHE3 and the effect of oxidative stress on this phenomenon. Male Sprague-Dawley rats were chronically treated with a pro-oxidant l-buthionine sulfoximine (BSO) with and without an antioxidant tempol in tap water for 3 wk. BSO-treated rats exhibited oxidative stress and high blood pressure. At low concentration (1 pM) ANG II increased NHE3 activity in proximal tubules from all animals. However, in BSO-treated rats, the stimulation was more robust and was normalized by tempol treatment. ANG II (1 pM)-mediated NHE3 activation was abolished by AT1R blocker, intracellular Ca2+ chelator, and inhibitors of phospholipase C (PLC) and Ca2+-dependent calmodulin (CaM) but it was insensitive to Giα and protein kinase C inhibitors or AT2R antagonist. A high concentration of ANG II (1 μM) inhibited NHE3 activity in control and tempol-treated rats. However, in BSO-treated rats, ANG II (1 μM) continued to induce NHE3 stimulation. Tempol restored the inhibitory effect of ANG II (1 μM) in BSO-treated rats. The inhibitory effect of ANG II (1 μM) involved AT1R-dependent, cGMP-dependent protein kinase (PKG) activation and was independent of AT2 receptor and nitric oxide signaling. We conclude that ANG II stimulates NHE3 via AT1R-PLC-CaM pathway and inhibits NHE3 by AT1R-PKG activation. Oxidative stress impaired ANG II-mediated NHE3 biphasic response in that stimulation was observed at both high- and low-ANG II concentration.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Shuzhuang Li ◽  
Tingting Cao ◽  
Shuo Ma ◽  
Xiujie Li ◽  
Yue Bi ◽  
...  

Background: It is an imperative task to identify the mechanisms responsible for post-traumatic secondary myocardial injury. Our previous experiments showed that mechanical trauma (MT) could induce secondary myocardial injury via oxidative stress. The transient potential receptor M2 (TRPM2) channel has emerged as an important Ca 2+ signaling mechanism in a variety of cells, contributing to cellular functions that include cytokine production, cell motility and cell death. However, the role of TRPM2 channel in nonlethal mechanical traumatic cardiac damage remains unclear. The aim of the present study was to investigate whether TRPM2 channel is involved in myocardial injury in rats subjected to nonlethal MT. Methods and results: Western blot was used to quantify TRPM2 protein levels in Ventricular myocytes of adult male Sprague Dawley rats. Up-regulation of TRPM2 channel protein was observed in the following 12h after MT. It was observed that plasma harvested from MT rats increased cytosolic Ca 2+ concentration dose-dependently in H9c2 cells. To verify the role of TRPM2 further, we administered TRPM2 blockers flufenamic acid (FFA, 100uM) and clotrimazole (CLZ, 30uM) respectively to inhibit Ca 2+ influx, which leads to attenuated intracelluar Ca 2+ overload and apoptosis induced by MT plasma in H9c2 cells. Those two TRPM2 blockers also improved cardiac dysfunction induced MT in rats. When we used TMB-8 (inhibitor of sarcoplasmic reticulum Ca 2+ store) to inhibit calcium store mobilization, intracellular Ca 2+ level, apoptosis and cardiac dysfunction were also ameliorated. However, the administration of KBR-7943 (inhibitor of Na/Ca exchanger) did not reverse the pathological process following MT. Conclusion: These results demonstrate that post-trauma pathological phenomena is associated with TRPM2 closely via a redox-sensitive signal transduction pathway (mainly via MT-initiated Ca 2+ influx, even calcium overload pathway) .We propose that treatments like blockage of TRPM2 channel-associated Ca 2+ influx and mobilization, may shed light on the novel therapeutic strategy in reducing cardiac injury and post-trauma multiple organ failure.


2017 ◽  
Vol 44 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Qianhui Li ◽  
Yin Xiang ◽  
Yu Chen ◽  
Yong Tang ◽  
Yachen Zhang

Background/Aims: Excessive reactive oxygen species (ROS) disturb the physiology of H9c2 cells, which is regarded as a major cause of H9c2 cardiomyocyte apoptosis. Ginsenoside Rg1 is the main active extract of ginseng, which has important antioxidant properties in various cell models. This project investigated the role of ginsenoside Rg1 in hypoxia/reoxygenation (H/R)-induced oxidative stress injury in cultured H9c2 cells to reveal the underlying signaling pathways. Methods: H9c2 cells were pretreated with ginsenoside Rg1 for 12 h before exposure to H/R. In the absence or presence of Nrf2siRNA, HO-1 inhibitor (ZnPP-IX), and inhibitors of the MAPK pathway (SB203580, PD98059, SP600125), H9c2 cells were subjected to H/R with Rg1 treatment. The effects and mechanisms of H/R-induced cardiomyocyte injury were measured. Results: Ginsenoside Rg1 treatment suppressed H/R-induced apoptosis and caspase-3 activation. Ginsenoside Rg1 treatment decreased ROS production and mitochondrial membrane depolarization by elevating the intracellular antioxidant capacity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH). Furthermore, ginsenoside Rg1 stimulation appeared to result in nuclear translocation of NF-E2-related factor 2 (Nrf2), along with enhanced expression of the downstream target gene heme oxygenase-1 (HO-1) in a dose-dependent manner. However, ginsenoside Rg1-mediated cardioprotection was abolished by Nrf2-siRNA and HO-1 inhibitor. H/R treatment increased the levels of phosphorylated c-Jun N-terminal kinases (p-JNK), which was dramatically attenuated by ginsenoside Rg1 and SP600125 (a specific JNK inhibitor). Conclusion: These observations indicate that ginsenoside Rg1 activates the Nrf2/HO-1 axis and inhibits the JNK pathway in H9c2 cells to protect against oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


Sign in / Sign up

Export Citation Format

Share Document