scholarly journals Experimental Study of Solar Energy Based Water Purifier (SEBWP) of Single Slope Type by Incorporating N Similar Evacuated Tubular Collectors (ETCs) having Series Connection

Author(s):  
Sanjeev Kumar Sharma ◽  
Ashis Mallick ◽  
Desh Bandhu Singh ◽  
Gopal Nath Tiwari

Abstract This research paper deals with the experimental investigation of solar energy based water purifier (SEBWP) of single slope type by incorporating N similar evacuated tubular collectors (ETCs) having series connection. Experimental investigation has been done for a year from August 2018 to July 2019. MATLAB has been used for evaluating performance parameters of the system followed by the validation of these results with their experimental values. A fair agreement has been found between theoretical and experimental values. Values of correlation coefficients for condensing glass temperature, water temperature and water yield have been found to be 0.9932, 0.9928 and 0.9951 respectively. Further, energy metrics, productivity, cost of producing one kg of fresh water, exergoeconomic and enviroeconomic parameters have been evaluated. Values of energy payback time, per kg cost of producing fresh water and exergy loss per unit Rs. have been evaluated to be 1.72 years, Rs. 0.95/kg and 0.128 kWh/Rs. respectively.

2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


2020 ◽  
Vol 66 (6) ◽  
pp. 395-407 ◽  
Author(s):  
p Sevvel ◽  
S.D. Dhanesh Babu ◽  
R. Senthil Kumar

A quadratic equation has been developed based on experimental measurements to estimate the peak temperature in the friction stir welding (FSW) process during the joining of AZ80A Mg alloys. The numerical simulation of the FSW process was performed by employing COMSOL software to predict and calculate the distribution of temperature on the various regions of the parent metal and the welded joints. The predicted and finite element analysis (FEA) simulating the results of the distribution of peak temperatures were found to be consistent with the experimental values. In addition to this, a parametric experimental investigation was conducted to identify the most influential process parameter that plays a significant role in the peak temperature distribution during FSW of AZ80A Mg alloy. Linear contributions by the input process parameters of FSW, namely, traversing speed, rotating tool speed and axial force on the peak temperature were observed to be 32.82 %, 41.65 % and 21.76 %, respectively.


2015 ◽  
Vol 8 (6) ◽  
pp. 244-265 ◽  
Author(s):  
Ravishankar Sathyamurt ◽  
D.G. Harris Samuel ◽  
P.K. Nagarajan ◽  
S.A. El-Agouz
Keyword(s):  

2019 ◽  
Vol 11 (2) ◽  
pp. 177-205 ◽  
Author(s):  
Fadhil Y. Al-Aboosi

AbstractThe precise estimation of solar radiation data is substantial in the long-term evaluation for the techno-economic performance of solar energy conversion systems (e.g., concentrated solar thermal collectors and photovoltaic plants) for each site around the world, particularly, direct normal irradiance which is utilized commonly in designing solar concentrated collectors. However, the lack of direct normal irradiance data comparing to global and diffuse horizontal irradiance data and the high cost of measurement equipment represent significant challenges for exploiting and managing solar energy. Consequently, this study was performed to develop two hierarchical methodologies by using various models, empirical correlations and regression equations to estimate hourly solar irradiance data for various worldwide locations (using new correlation coefficients) and different sky conditions (using cloud cover range). Additionally, the preliminary assessment for the potential of solar energy in the selected region was carried out by developing a comprehensive analysis for the solar irradiance data and the clearness index to make a proper decision for the capability of utilizing solar energy technologies. A case study for the San Antonio region in Texas was selected to demonstrate the accuracy of the proposed methodologies for estimating hourly direct normal irradiance and monthly average hourly direct normal irradiance data at this region. The estimated data show a good accuracy comparing with measured solar data by using locally adjusted coefficients and different statistical indicators. Furthermore, the obtained results show that the selected region is unequivocally amenable to harnessing solar energy as the prime source of energy by utilizing concentrating and non-concentrating solar energy systems.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmadjid Si Salem ◽  
Fatma Taouche-Kkheloui ◽  
Kamal Ait Tahar

PurposeThe present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.Design/methodology/approachThe experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.FindingsThe emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.Originality/valueThe paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.


Sign in / Sign up

Export Citation Format

Share Document