scholarly journals Concurrently Produce a Novel High-Potency Sweetener (Glycyrrhetic Acid 3-O-Mono-β-D-glucuronide) and Lignocellulolytic Enzymes using Plant Entophytic Chaetomium Globosum DX-THS3 by Solid-State Fermentation

Author(s):  
Boliang Gao ◽  
Yiwen Xiao ◽  
Qian Zhang ◽  
Junru Sun ◽  
Zhibing Zhang ◽  
...  

Abstract Licorice straw was used for the first time as a medium for glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P=2.1 mg•g-1•day-1) was 2.33-fold that of non-optimization (P=0.9 mg•g-1•day-1). Meanwhile, high activities of filter paper enzyme (FPase) (234.6 U/g), carboxymethyl cellulase (CMCase) (29.25 U/g), xylanase (72.52 U/g), and β-glucuronidase activity (264.17 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Boliang Gao ◽  
Yiwen Xiao ◽  
Qian Zhang ◽  
Junru Sun ◽  
Zhibing Zhang ◽  
...  

AbstractGlycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) as an important derivative of glycyrrhizin (GL) shows stronger biological activities and higher sweetness than GL. The biotransformation process is considered as an efficient strategy for GAMG production, due to its mild reaction, high production efficiency and environmentally friendly status. In this study, licorice straw was used for the first time as a medium for GAMG and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. The fermentation conditions including particle size, temperature, seed age, inoculum size, and moisture of substrate were optimized. Furthermore, additional nitrogen sources and carbon sources were screened for GAMG production by C. globosum DX-THS3 of SSF. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P = 2.1 mg/g/day) was 2.33-fold that of non-optimization (P = 0.9 mg/g/day). Meanwhile, high activities of filter paper enzyme (FPase) (245.80 U/g), carboxymethyl cellulase (CMCase) (33.67 U/g), xylanase (83.44 U/g), and β-glucuronidase activity (271.42 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 4982-4995
Author(s):  
Mei-Ling Han ◽  
Qi An ◽  
Sai-Fei He ◽  
Xiao-Lin Zhang ◽  
Ming-Hui Zhang ◽  
...  

Solid state fermentation with different lignocellulolytic materials as inducers was used for lignocellulolytic enzyme production in this study. Pleurotus ostreatus strains were assessed by measuring laccase, CMCase, and xylanase activities. The secretion potential of the lignocellulolytic enzymes by wild and cultivated strains was analyzed for the first time. The wild and cultivated strain showed their unique capacities for secreting lignocellulolytic enzymes on solid-state fermentation with different lignocellulosic materials. The wild P. ostreatus strain preferred corncob for the secretion of laccase and xylanase activity, but the cultivated strain preferred poplar sawdust. The wild strain and cultivated strain showed a consistent preference for poplar sawdust for the secretion of CMCase activity. The wild strain was advantageous because it achieved the maximum hydrolytic enzyme activities within a short time period. Poplar sawdust and corncob were conducive to laccase secretion by the wild or cultivated strains and the rapid accumulation of laccase on solid-state fermentation. Additionally, continuous, stable laccase production was an extremely important advantage by solid-state fermentation of poplar sawdust, particularly in the wild strain. These findings are helpful in selecting the appropriate strain that corresponds to suitable lignocellulosic materials. The optimization of integrated industrial lignocellulolytic enzyme production can also be achieved.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2013 ◽  
Vol 4 (3) ◽  
pp. 201-209 ◽  
Author(s):  
José Manuel Salgado ◽  
Luís Abrunhosa ◽  
Armando Venâncio ◽  
José Manuel Domínguez ◽  
Isabel Belo

Author(s):  
MARIA ALICE ZARUR COELHO ◽  
SELMA GOMES FERREIRA LEITE ◽  
MORSYLEIDE DE FREITAS ROSA ◽  
ANGELA APARECIDA LEMOS FURTADO

Investigou-se o aproveitamento da casca do coco verde, mediante fermentação semisólida, para produção de enzimas. A casca de coco foi previamente desidratada, moída e classificada em três diferentes granulometrias, ou seja, 14, 28 e 32 mesh Tyler. Todas as enzimas obtidas tiveram sua produção máxima na faixa de 24 e 96 horas, o que corresponde ao tempo de produção industrial corrente. Cada granulometria produziu complexos enzimáticos ricos em diferentes atividades. O estudo realizado validou a hipótese do aproveitamento do resíduo da casca do coco verde na produção de enzimas por Aspergillus niger. Abstract The utilization of immature coconut peel as substrate for enzyme production by solid state fermentation was investigated. The coconut peel was previously dehydrated, milled and classified in three distinct granulometries: 14, 28 and 32 mesh Tyler. All the enzymes obtained had its maximum production in 24 to 96 hour interval, which correspond to the current industrial production time. Each granulometry produced rich enzymatic complexes with different activities. This study validates the hypothesis of benefit immature coconut peel as raw material for enzyme production by Aspergillus niger.


Sign in / Sign up

Export Citation Format

Share Document