scholarly journals Concurrent production of glycyrrhetic acid 3-O-mono-β-d-glucuronide and lignocellulolytic enzymes by solid-state fermentation of a plant endophytic Chaetomium globosum

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Boliang Gao ◽  
Yiwen Xiao ◽  
Qian Zhang ◽  
Junru Sun ◽  
Zhibing Zhang ◽  
...  

AbstractGlycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) as an important derivative of glycyrrhizin (GL) shows stronger biological activities and higher sweetness than GL. The biotransformation process is considered as an efficient strategy for GAMG production, due to its mild reaction, high production efficiency and environmentally friendly status. In this study, licorice straw was used for the first time as a medium for GAMG and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. The fermentation conditions including particle size, temperature, seed age, inoculum size, and moisture of substrate were optimized. Furthermore, additional nitrogen sources and carbon sources were screened for GAMG production by C. globosum DX-THS3 of SSF. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P = 2.1 mg/g/day) was 2.33-fold that of non-optimization (P = 0.9 mg/g/day). Meanwhile, high activities of filter paper enzyme (FPase) (245.80 U/g), carboxymethyl cellulase (CMCase) (33.67 U/g), xylanase (83.44 U/g), and β-glucuronidase activity (271.42 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes.

2021 ◽  
Author(s):  
Boliang Gao ◽  
Yiwen Xiao ◽  
Qian Zhang ◽  
Junru Sun ◽  
Zhibing Zhang ◽  
...  

Abstract Licorice straw was used for the first time as a medium for glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P=2.1 mg•g-1•day-1) was 2.33-fold that of non-optimization (P=0.9 mg•g-1•day-1). Meanwhile, high activities of filter paper enzyme (FPase) (234.6 U/g), carboxymethyl cellulase (CMCase) (29.25 U/g), xylanase (72.52 U/g), and β-glucuronidase activity (264.17 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes.


2021 ◽  
Vol 30 (1) ◽  
pp. 257-275
Author(s):  
Nazaitulshila Rasit ◽  
Yong Sin Sze ◽  
Mohd Ali Hassan ◽  
Ooi Chee Kuan ◽  
Sofiah Hamzah ◽  
...  

In this study, the biomass of banana peel was used to produce pectinase via optimization of solid-state fermentation conditions of the filamentous fungi Aspergillus nigeA. niger). The operating conditions of solid-state fermentation were optimized using the method of full factorial design with incubation temperature ranging between 25 °C and 35 °C, moisture content between 40% and 60%, and inoculum size between 1.6 x 106 spores/mL and 1.4 x 107 spores/mL. Optimizing the solid-state fermentation conditions appeared crucial to minimize the sample used in this experimental design and determine the significant correlation between the operating conditions. A relatively high maximal pectinase production of 27 UmL-1 was attained at 35° C of incubation, 60% of moisture content, and 1.6 x 106 spores/mL of inoculum size with a relatively low amount of substrate (5 g). Given that the production of pectinase with other substrates (e.g., pineapple waste, lemon peel, cassava waste, and wheat bran) generally ranges between 3 U/mL and 16 U/mL (Abdullah et al., 2018; Handa et al., 2016; Melnichuk et al., 2020; Thangaratham and Manimegalai, 2014; Salim et al., 2017), thus the yield of pectinase derived from the banana peel in this study (27 U/mL) was considered moderately high. The findings of this study indicated that the biomass of banana peel would be a potential substrate for pectinase production via the solid-state fermentation of A. niger.


Author(s):  
Eman I. El-Tabakh ◽  
Mostafa M. Abo Elsoud ◽  
Marwa S. Salem ◽  
Nagwa M. Sidkey

Some environmental and nutritional parameters controlling the biosynthesis of α-amylase from Aspergillus flavus, F7 attacking the water hyacinth have been investigated under solid state fermentation conditions for maximum amylase production. The following optima’s were recorded for the highest α-amylase yield; Incubation period 7 days; temperature, 30oC; pH, 5; inoculum size, 3X108 spores/ml; flask volume 100 ml capacity; hyacinth fresh weight 5 g; tap water, 25 ml. Under these conditions, starch showed remarkable stimulatory effect; nitrogen sources and amino acids have no stimulatory effect. Pyridoxal hydrochloride, B6 at a concentration of 200 ppm exhibited a stimulatory effect on biosynthesis of α-amylase. 


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Ana Elisa Alves Magro ◽  
Laura Carvalho Silva ◽  
Gabriela Boscariol Rasera ◽  
Ruann Janser Soares de Castro

Abstract Background Fermentation is a classic industrial process that can be applied as an efficient strategy to increase the release of bioactive compounds with antioxidant and antidiabetic activities. Methods This work reported the effects of solid-state fermentation (SSF) performed using strains of Aspergillus oryzae and Aspergillus niger on the antioxidant (DPPH, ABTS and FRAP) and in vitro antidiabetic (inhibition of α-amylase and α-glucosidase activities) potential of lentils. Results The results showed that the profiles of the biological activities of the extracts obtained from the fermented samples varied greatly with respect to both the microorganism involved and the fermentation time. The extracts obtained from the fermented lentils by A. oryzae after 72 h and by A. niger after 48 h using the FRAP assay showed the most remarkable changes in the antioxidant activity, increasing by 107 and 81%, respectively, compared to the nonfermented lentils. The lentil extracts produced by fermentation with A. niger after 48 h were able to inhibit the α-glucosidase activity by up to 90%, while a maximal inhibition of amylase (~ 75%) was achieved by the lentil extract obtained after 24 h of fermentation with A. oryzae. The content of the total phenolic compounds (TPCs) and the identification of them in lentil extracts correlated well with the improvement of the biological activities. Conclusion These results suggested that SSF was feasible to obtain extracts of fermented lentils with improved antioxidant and antidiabetic properties. Additionally, these results indicated that the proper choice of microorganism is crucial to direct the process for the production of compounds with specific biological activities.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4832
Author(s):  
Jia Wei Peng ◽  
Ho Shing Wu

In the present study, we aimed to obtain a high yield and productivity for glucosamine using a low-cost solid-state culture with Aspergillus sydowii BCRC 31742. The fermentation conditions, such as inoculum biomass, moisture content, and supplemental volume and mineral salt, were chosen to achieve high productivity of glucosamine (GlcN). When the initial supplemental volume used was 3 mL/g substrate, the yield and productivity of GlcN were 48.7 mg/gds and 0.69 mg/gds·h, respectively. This result will be helpful for the industrialization of the process.


2019 ◽  
Vol 207 (1) ◽  
pp. 31-42 ◽  
Author(s):  
José Lucas de Almeida Antunes Ferraz ◽  
Lucas Oliveira Souza ◽  
André Gustavo de Araújo Fernandes ◽  
Marcio Luiz Ferreira Oliveira ◽  
Julieta Rangel de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document