scholarly journals Light Intensity Dependence of Current Density–voltage Characteristics of an Organic Solar Cell and Dominance Switching Between Shockley-read-hall and Radiative Recombination Losses

Author(s):  
Shin Young Ryu ◽  
Na Young Ha ◽  
Y. H. Ahn ◽  
Ji-Yong Park ◽  
Soonil Lee

Abstract We investigated the variation of current density-voltage (J-V) characteristics of an organic solar cell (OSC) in the dark and at 9 different light intensities ranging from 0.01 to 1 sun of the AM1.5G spectrum. All three conventional parameters, short-circuit currents (Jsc), open-circuit voltage (Voc), and Fill factor (FF), representing OSC performance evolved systematically in response to light intensity increase. Unlike Jsc that showed quasi-linear monotonic increase, Voc and FF showed distinctive non-monotonic variations. To elucidate the origin of such variations, we performed extensive simulation studies including Shockley-Read-Hall (SRH) recombination losses. Simulation results were sensitive to defect densities, and simultaneous agreement to 10 measured J-V curves was possible only with the defect density of 5 * 1012 cm-3 . Based on analyses of simulation results, we were able to separate current losses into SRH- and radiative-recombination components and, moreover, identify that the competition between SRH- and radiative-loss currents were responsible for the aforementioned variations in Jsc, Voc, and FF. In particular, we verified that apparent demarcation in Voc, and FF variations, which seemed to appear at different light intensities, originated from the same mechanism of dominance switching between recombination losses.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinyoung Ryu ◽  
Na Young Ha ◽  
Y. H. Ahn ◽  
Ji-Yong Park ◽  
Soonil Lee

AbstractWe investigated the variation of current density–voltage (J–V) characteristics of an organic solar cell (OSC) in the dark and at 9 different light intensities ranging from 0.01 to 1 sun of the AM1.5G spectrum. All three conventional parameters, short-circuit currents (Jsc), open-circuit voltage (Voc), and Fill factor (FF), representing OSC performance evolved systematically in response to light intensity increase. Unlike Jsc that showed quasi-linear monotonic increase, Voc and FF showed distinctive non-monotonic variations. To elucidate the origin of such variations, we performed extensive simulation studies including Shockley–Read–Hall (SRH) recombination losses. Simulation results were sensitive to defect densities, and simultaneous agreement to 10 measured J–V curves was possible only with the defect density of $$5 \times 10^{12} {\text{ cm}}^{ - 3}$$ 5 × 10 12 cm - 3 . Based on analyses of simulation results, we were able to separate current losses into SRH- and bimolecular-recombination components and, moreover, identify that the competition between SRH- and bimolecular-loss currents were responsible for the aforementioned variations in Jsc, Voc, and FF. In particular, we verified that apparent demarcation in Voc, and FF variations, which seemed to appear at different light intensities, originated from the same mechanism of dominance switching between recombination losses.


2017 ◽  
Vol 5 (23) ◽  
pp. 11739-11745 ◽  
Author(s):  
Jiangquan Mai ◽  
Haipeng Lu ◽  
Tsz-Ki Lau ◽  
Shih-Hao Peng ◽  
Chain-Shu Hsu ◽  
...  

The short circuit current density and fill factor are improved in ternary organic solar cell due to the high morphology compatibility.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


2021 ◽  
pp. 100783
Author(s):  
Christopher Rosiles-Perez ◽  
Sirak Sidhik ◽  
Luis Ixtilico-Cortés ◽  
Fernando Robles-Montes ◽  
Tzarara López-Luke ◽  
...  

2009 ◽  
Vol 1212 ◽  
Author(s):  
Dewei Zhao ◽  
Xiao Wei Sun ◽  
Lin Ke ◽  
Swee Tiam Tan

AbstractWe present an efficient polymer-small molecule triple-tandem organic solar cell (OSC), consisting of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) bulk heterojunction as the first and second cells, and small molecules copper phthalocyanine (CuPc) and fullerene (C60) as the third cell on top. These sub-cells are connected by an intermediate layer of Al(1 nm)/MoO3(15 nm), which appears to be highly transparent, structurally smooth, and electrically functional. Compared to our previous all polymer triple-tandem organic solar cells (2.03%), this polymer-small molecule triple-tandem organic solar cell achieves an improved power conversion efficiency of 2.18% with a short-circuit current density (Jsc) = 3.02 mA/cm2, open-circuit voltage (Voc) = 1.51 V, and fill factor (FF) = 47.7% under simulated solar irradiation of 100 mW/cm2 (AM1.5G), which can be attributed to the increased photocurrent generation in the third cell since the third cell has the complementary absorption with two bottom cells despite a slightly reduced Voc.


2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


2021 ◽  
Vol 13 (23) ◽  
pp. 13087
Author(s):  
Waqas Farooq ◽  
Muhammad Ali Musarat ◽  
Javed Iqbal ◽  
Syed Asfandyar Ali Kazmi ◽  
Adnan Daud Khan ◽  
...  

Modification of a cell’s architecture can enhance the performance parameters. This paper reports on the numerical modeling of a thin-film organic solar cell (OSC) featuring distributed Bragg reflector (DBR) pairs. The utilization of DBR pairs via the proposed method was found to be beneficial in terms of increasing the performance parameters. The extracted results showed that using DBR pairs helps capture the reflected light back into the active region by improving the photovoltaic parameters as compared to the structure without DBR pairs. Moreover, implementing three DBR pairs resulted in the best enhancement gain of 1.076% in power conversion efficiency. The measured results under a global AM of 1.5G were as follows: open circuit voltage (Voc) = 0.839 V; short circuit current density (Jsc) = 10.98 mA/cm2; fill factor (FF) = 78.39%; efficiency (η) = 11.02%. In addition, a thermal stability analysis of the proposed design was performed and we observed that high temperature resulted in a decrease in η from 11.02 to 10.70%. Our demonstrated design may provide a pathway for the practical application of OSCs.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-5
Author(s):  
Victor De Rezende Cunha ◽  
Daniel Neves Micha ◽  
Rudy Massami Sakamoto Kawabata ◽  
Luciana Dornelas Pinto ◽  
Mauricio Pamplona Pires ◽  
...  

Electrical current mismatching is a well-known limitation of triple junction solar cells that lowers the final conversion efficiency. Several solutions have been proposed to face this issue, including the insertion of a multiple quantum well structure as the intermediate junction’s active material. With a better matching in the current among the junctions, the total current increases, thus modifying the working conditions of the overall device. In this way, the InGaP top junction needs to be optimized to such new condition. In this work, numerical simulations were carried out aiming the enlargement of the electrical current density of an InGaP pn junction to achieve the proper current matching in triple junction solar cell for spatial applications. The optimized structure has been grown in a GaAs substrate and characterized as a single junction solar cell. Although the measured short circuit current density and conversion efficiency are still well below the theoretically predicted values, processing improvement should lead to adequate cell performance.


2012 ◽  
Vol 531-532 ◽  
pp. 40-44
Author(s):  
Zhi Feng Liu ◽  
Yi Ting Liu

Hybrid solar cell based on copper-phthalocyanine (CuPc) and textured Si has been fabricated. Influence of silicon texturization on the photovoltaic properties of CuPc/n-Si hybrid solar cell was studied by current-voltage characteristic curves in the dark and under illumination conditions. As a result, it is found that textured Si can improve significantly the performance of hybrid solar cell. It exhibits a three times increase in the short-circuit current density with respect to that of the standard hybrid solar cell, and the short-circuit current density reaches up to 5.4 mA/cm2. In addition, the open-voltage and fill factor are almost constant. The solar-energy conversion efficiency is increased by about three times by the textured Si and achieved about 0.8% under “one Sun” illumination. Furthermore, the possible reasons for this result have been discussed.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


Sign in / Sign up

Export Citation Format

Share Document