scholarly journals Functional SARS-CoV-2-specific immune memory persists after mild COVID-19

2020 ◽  
Author(s):  
Marion Pepper ◽  
Lauren Rodda ◽  
Jason Netland ◽  
Laila Shehata ◽  
Kurt Pruner ◽  
...  

Abstract The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.

Author(s):  
Lauren B Rodda ◽  
Jason Netland ◽  
Laila Shehata ◽  
Kurt B Pruner ◽  
Peter M Morawski ◽  
...  

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.


2022 ◽  
Author(s):  
Lauren B. Rodda ◽  
Peter A. Morawski ◽  
Kurt B. Pruner ◽  
Mitchell L. Fahning ◽  
Christian A. Howard ◽  
...  

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-𝛾 and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. While additional vaccination could increase humoral memory, it did not recapitulate the distinct CD4+ T cell cytokine profile in previously naive individuals. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Author(s):  
Morihito Takita ◽  
Tomoko Matsumura ◽  
Kana Yamamoto ◽  
Erika Yamashita ◽  
Kazutaka Hosoda ◽  
...  

AbstractThe serosurvey is an alternative way to know the magnitude of the population infected by coronavirus disease 2019 (COVID-19) since the expansion of capacity of the polymerase chain reaction (PCR) to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was delayed. We herein report seroprevalence of COVID-19 accessed in the two community clinics in Tokyo. The point-of-care immunodiagnostic test was implemented to detect the SARS-CoV-2 specific IgG antibody in the peripheral capillary blood. The overall positive percentage of SARS-CoV-2 IgG antibody is 3.83% (95% confidence interval: 2.76-5.16) for the entire cohort (n =1,071). The central Tokyo of 23 special wards exhibited a significantly higher prevalence compared to the other area of Tokyo (p =0.02, 4.68% [95%CI: 3.08-6.79] versus 1.83 [0.68-3.95] in central and suburban Tokyo, respectively). The seroprevalence of the cohort surveyed in this study is low for herd immunity, which suggests the need for robust disease control and prevention. A community-based approach, rather than state or prefectural levels, is of importance to figure out profiles of the SARS-COV-2 outbreak.


2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Sarah A. Greaves ◽  
Avinash Ravindran ◽  
Radleigh G. Santos ◽  
Lan Chen ◽  
Michael T. Falta ◽  
...  

Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.


2003 ◽  
Vol 198 (12) ◽  
pp. 1909-1922 ◽  
Author(s):  
Souheil-Antoine Younes ◽  
Bader Yassine-Diab ◽  
Alain R. Dumont ◽  
Mohamed-Rachid Boulassel ◽  
Zvi Grossman ◽  
...  

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


2003 ◽  
Vol 10 (3) ◽  
pp. 426-430 ◽  
Author(s):  
Jan Kilhamn ◽  
Samuel B. Lundin ◽  
Hans Brevinge ◽  
Ann-Mari Svennerholm ◽  
Marianne Jertborn

ABSTRACT The capacity of an oral live attenuated Salmonella enterica serovar Typhi Ty21a vaccine to induce immune responses in patients who had undergone colectomies because of ulcerative colitis was evaluated, and these responses were compared with those of healthy volunteers. Purified CD4+ and CD8+ T cells from peripheral blood were stimulated in vitro by using the heat-killed Ty21a vaccine strain, and the proliferation and gamma interferon (IFN-γ) production were measured before and 7 or 8 days after vaccination. Salmonella-specific immunoglobulin A (IgA) and IgG antibody responses in serum along with IgA antibody responses in ileostomy fluids from the patients who had undergone colectomies were also evaluated. Three doses of vaccine given 2 days apart failed to induce proliferative T-cell responses in all the six patients who had undergone colectomies, and increases in IFN-γ production were found only among the CD8+ cells from three of the patients. In contrast, both proliferative responses and increased IFN-γ production were observed among CD4+ and CD8+ T cells from 3 and 6 of 10 healthy volunteers, respectively. Salmonella-specific IgA and/or IgG antibody responses in serum were observed for five (56%) of nine patients who had undergone colectomies and in 15 (88%) of 17 healthy volunteers. In ileostomy fluids, significant anti-Salmonella IgA antibody titer increases were detected in six (67%) of nine patients who had undergone colectomies. The impaired T- and B-cell immune responses found after vaccination in the circulation of patients who have undergone colectomies may be explained by a diminished colonization of the Ty21a vaccine strain due to the lack of a terminal ileum and colon.


2021 ◽  
Author(s):  
Patricia Kaaijk ◽  
Veronica Olivo Pimentel ◽  
Maarten E. Emmelot ◽  
Martien Poelen ◽  
Alper Cevirgel ◽  
...  

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to considerable morbidity/mortality worldwide, but most infections, especially among children, have a mild course. However, it remains largely unknown whether infected children develop cellular immune memory. Methods: To determine whether a memory T cell response is being developed as an indicator for long-term immune protection, we performed a longitudinal assessment of the SARS-CoV-2-specific T cell response by IFN-γ ELISPOT and activation marker expression analyses of peripheral blood samples from children and adults with mild-to-moderate COVID-19. Results: Upon stimulation of PBMCs with heat-inactivated SARS-CoV-2 or overlapping peptides of spike (S-SARS-CoV-2) and nucleocapsid proteins, we found S-SARS-CoV-2-specific IFN-ɣ T cell responses in most infected children (83%) and all adults (100%) that were absent in unexposed controls. Frequencies of SARS-CoV-2-specific T cells were higher in infected adults, especially in those with moderate symptoms, compared to infected children. The S-SARS-CoV-2 IFN-ɣ T cell response correlated with S1-SARS-CoV-2-specific serum IgM, IgG, and IgA antibody concentrations. Predominantly, effector memory CD4+ T cells of a Th1 phenotype were activated upon exposure to SARS-CoV-2 antigens, which persisted for 4-8 weeks after symptom onset. We detected very low frequencies of SARS-CoV-2-reactive CD8+ T cells in these individuals. Conclusions: Our data indicate that an antigen-specific memory CD4+ T cell response is induced in children and adults with mild SARS-CoV-2 infection. T cell immunity induced after mild COVID-19 could contribute to protection against re-infection.


2021 ◽  
Vol 118 (21) ◽  
pp. e2104407118
Author(s):  
Jasmine C. Labuda ◽  
Oanh H. Pham ◽  
Claire E. Depew ◽  
Kevin D. Fong ◽  
Bokyung S. Lee ◽  
...  

Anatomical positioning of memory lymphocytes within barrier tissues accelerates secondary immune responses and is thought to be essential for protection at mucosal surfaces. However, it remains unclear whether resident memory in the female reproductive tract (FRT) is required for Chlamydial immunity. Here, we describe efficient generation of tissue-resident memory CD4 T cells and memory lymphocyte clusters within the FRT after vaginal infection with Chlamydia. Despite robust establishment of localized memory lymphocytes within the FRT, naïve mice surgically joined to immune mice, or mice with only circulating immunity following intranasal immunization, were fully capable of resisting Chlamydia infection via the vaginal route. Blocking the rapid mobilization of circulating memory CD4 T cells to the FRT inhibited this protective response. These data demonstrate that secondary protection in the FRT can occur in the complete absence of tissue-resident immune cells. The ability to confer robust protection to barrier tissues via circulating immune memory provides an unexpected opportunity for vaccine development against infections of the FRT.


2020 ◽  
Author(s):  
Qiu-bo Wang ◽  
Yun-ting Du ◽  
Fei Liu ◽  
Xiao-dan Sun ◽  
Xun Sun ◽  
...  

Abstract Backgroud: As the quest to eradicate malaria continues, it is important to clarify the opposite clinical outcomes between children and adulthood. The relationship between adaptive immune response and age-related malaria infection remains unknown.Methods: 4 and 8-week-old mice were used to mimic children and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and Plasmodium yoelii MSP-1-specific IgG were measured by ELISA.Results: Our results found that childhood mice were more susceptible to P. yoelii 17XNL infection, with lower survival rate and higher parasitemia. The adult group showed greater resistance to P. yoelii 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4+T-bet+IFN-γ+ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after P. yoelii 17XNL infection. The percentage of CD4+GATA3+IL-4+ Th2 cells and CD4+CXCR5+ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after P. yoelii 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and P. yoelii MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4+ or activated CD4+ T cells in the 8-week-old mice as compared to the 4-week-old group.Conclusions: Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4+ T cells exhaustion in P. yoelii 17XNL infected 8-week-old mice.


2020 ◽  
Author(s):  
Qiu-bo Wang ◽  
Yun-ting Du ◽  
Fei Liu ◽  
Xiao-dan Sun ◽  
Xun Sun ◽  
...  

Abstract Backgroud: As the quest to eradicate malaria continues, it is important to clarify the opposite clinical outcomes between childhood and adulthood. The relationship between adaptive immune response and age-related malaria infection remains unknown. Methods: 4 and 8-week-old mice were used to mimic childhood and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and Plasmodium yoelii MSP-1-specific IgG were measured by ELISA. Results: Our results found that childhood mice were more susceptible to P. yoelii 17XNL infection, with lower survival rate and higher parasitemia. The adult group showed greater resistance to P. yoelii 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4+T-bet+IFN-γ+ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after P. yoelii 17XNL infection. The percentage of CD4+GATA3+IL-4+ Th2 cells and CD4+CXCR5+ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after P. yoelii 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and P. yoelii MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4+ or activated CD4+ T cells in the 8-week-old mice as compared to the 4-week-old group. Conclusions: Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4+ T cells exhaustion in P. yoelii 17XNL infected 8-week-old mice.


Sign in / Sign up

Export Citation Format

Share Document