scholarly journals Exploring the role of meteorological factors in predicting incident pulmonary tuberculosis: A time-series study in eastern China

2020 ◽  
Author(s):  
Zhongqi Li ◽  
Hongqiu Pan ◽  
Qiao Liu ◽  
Huan Song ◽  
Jianming Wang

Abstract BackgroundMany studies have compared the performance of time-series models in predicting pulmonary tuberculosis (PTB). Few studies regarding the role of meteorological factors in predicting PTB are available. This study aims to explore whether incorporating meteorological factors can improve the performance of time series models in predicting pulmonary tuberculosis (PTB).MethodsWe collected the monthly number of PTB cases registered in three cities of China from 2005 to 2018, and data of six meteorological factors in the same period. We constructed three time-series models, including the autoregressive integrated moving average (ARIMA) model, the ARIMA with exogenous variables (ARIMAX) model, and the recurrent neural network (RNN) model. The construction of the ARIMA model did not incorporate meteorological factors, while the construction of ARIMAX and RNN models incorporated meteorological factors. The mean absolute percentage error (MAPE) and root mean square error (RMSE) were used to compare the performance of models in predicting the monthly number of PTB cases in 2018.ResultsBoth the cross-correlation analysis and spearman rank correlation test showed that PTB was related to meteorological factors in the three cities. The prediction performance of both ARIMA and RNN models was improved after incorporating the meteorological factors. The MAPEs of the ARIMA, ARIMAX, and RNN models were 12.536%, 11.957%, and 12.360% in Xuzhou, 15.568%, 11.155%, and 14.087% in Nantong, and 9.700%, 9.660% and 12.501% in Wuxi, respectively. The RMSEs of the three models were 36.194, 33.956 and 34.785 in Xuzhou, 34.073, 25.884 and 31.828 in Nantong, and 19.545, 19.026 and 26.019 in Wuxi, respectively.ConclusionsOur study revealed a possible link between PTB and meteorological factors. Taking meteorological factors into consideration may increase the accuracy of time series models in predicting PTB.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhong-Qi Li ◽  
Hong-Qiu Pan ◽  
Qiao Liu ◽  
Huan Song ◽  
Jian-Ming Wang

Abstract Background Many studies have compared the performance of time series models in predicting pulmonary tuberculosis (PTB), but few have considered the role of meteorological factors in their prediction models. This study aims to explore whether incorporating meteorological factors can improve the performance of time series models in predicting PTB. Methods We collected the monthly reported number of PTB cases and records of six meteorological factors in three cities of China from 2005 to 2018. Based on this data, we constructed three time series models, including an autoregressive integrated moving average (ARIMA) model, the ARIMA with exogenous variables (ARIMAX) model, and a recurrent neural network (RNN) model. The ARIMAX and RNN models incorporated meteorological factors, while the ARIMA model did not. The mean absolute percentage error (MAPE) and root mean square error (RMSE) were used to evaluate the performance of the models in predicting PTB cases in 2018. Results Both the cross-correlation analysis and Spearman rank correlation test showed that PTB cases reported in the study areas were related to meteorological factors. The predictive performance of both the ARIMA and RNN models was improved after incorporating meteorological factors. The MAPEs of the ARIMA, ARIMAX, and RNN models were 12.54%, 11.96%, and 12.36% in Xuzhou, 15.57%, 11.16%, and 14.09% in Nantong, and 9.70%, 9.66%, and 12.50% in Wuxi, respectively. The RMSEs of the three models were 36.194, 33.956, and 34.785 in Xuzhou, 34.073, 25.884, and 31.828 in Nantong, and 19.545, 19.026, and 26.019 in Wuxi, respectively. Conclusions Our study revealed a possible link between PTB and meteorological factors. Taking meteorological factors into consideration increased the accuracy of time series models in predicting PTB, and the ARIMAX model was superior to the ARIMA and RNN models in study settings.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3299
Author(s):  
Ashish Shrestha ◽  
Bishal Ghimire ◽  
Francisco Gonzalez-Longatt

Withthe massive penetration of electronic power converter (EPC)-based technologies, numerous issues are being noticed in the modern power system that may directly affect system dynamics and operational security. The estimation of system performance parameters is especially important for transmission system operators (TSOs) in order to operate a power system securely. This paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power system, which can thus help TSOs to operate a respective power system securely. A Markov chain Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS) algorithm is used as the optimization method here. The concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of datasets, and numerous performance measurement matrices are used for model validation. Besides, an autoregressive integrated moving average (ARIMA) model is used to compare the results of the presented model. At last, the optimal size of the training dataset is identified, which is required to forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be 4.67, 3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of historic data is sufficient to forecast short-term results for the case study here with an accuracy of 1.54504 for the RMSE.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad Rafi ◽  
Mohammad Taha Wahab ◽  
Muhammad Bilal Khan ◽  
Hani Raza

Automatic Teller Machine (ATM) are still largely used to dispense cash to the customers. ATM cash replenishment is a process of refilling ATM machine with a specific amount of cash. Due to vacillating users demands and seasonal patterns, it is a very challenging problem for the financial institutions to keep the optimal amount of cash for each ATM. In this paper, we present a time series model based on Auto Regressive Integrated Moving Average (ARIMA) technique called Time Series ARIMA Model for ATM (TASM4ATM). This study used ATM back-end refilling historical data from 6 different financial organizations in Pakistan. There are 2040 distinct ATMs and 18 month of replenishment data from these ATMs are used to train the proposed model. The model is compared with the state-of- the-art models like Recurrent Neural Network (RNN) and Amazon’s DeepAR model. Two approaches are used for forecasting (i) Single ATM and (ii) clusters of ATMs (In which ATMs are clustered with similar cash-demands). The Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) are used to evaluate the models. The suggested model produces far better forecasting as compared to the models in comparison and produced an average of 7.86/7.99 values for MAPE/SMAPE errors on individual ATMs and average of 6.57/6.64 values for MAPE/SMAPE errors on clusters of ATMs.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiazheng Lu ◽  
Tejun Zhou ◽  
Bo Li ◽  
Chuanping Wu

Wildfire is a large-scale complex system. Insight into the mechanism that drives wildfires can be revealed by the distribution of the wildfire over a large time scale, which is one of the important topics in wildfire research. In this study, the scaling properties of four meteorological factors (relative humidity, daily precipitation, daily average temperature, and maximum wind speed) that can affect wildfires (number of wildfires per day) were investigated by using the detrended fluctuation analysis method. The results showed that the time series for these meteorological factors and wildfires have similar power exponents and turning points for the power exponents curve. The five types of time series have a lasting and steady long-range power law correlation over a certain time scale range, where the corresponding exponents were 0.6484, 0.5724, 0.8647, 0.7344, and 0.6734, respectively. They also have a reversible long-range power law correlation beyond a certain time scale, where the corresponding exponents are 0.3862, 0.2218, 0.1372, 0.2621, and 0.2678. The multifractal detrended fluctuation analysis results showed that the wildfire time series were multifractal. The results of the research based on the detrended cross-correlation analysis and the multifractal detrended cross-correlation analysis showed that relative humidity and daily precipitation have a considerable impact on the wildfire time series, while the impacts of daily average temperature and the maximum wind speed are relatively small. This study showed that identifying the factors causing the inherent volatility in the wildfire time series can improve understanding of the dynamic mechanism controlling wildfires and the meteorological parameters. These results can also be used to quantify the correlation between wildfire and the meteorological factors investigated in this study.


Ecoscience ◽  
2016 ◽  
Vol 23 (1-2) ◽  
pp. 13-27 ◽  
Author(s):  
Xiao-Wei Zhao ◽  
Ping Zhao ◽  
Li-Wei Zhu ◽  
Xiu-Hua Zhao

2017 ◽  
Vol 145 (6) ◽  
pp. 1118-1129 ◽  
Author(s):  
K. W. WANG ◽  
C. DENG ◽  
J. P. LI ◽  
Y. Y. ZHANG ◽  
X. Y. LI ◽  
...  

SUMMARYTuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.


Author(s):  
Isra Al-Turaiki ◽  
Fahad Almutlaq ◽  
Hend Alrasheed ◽  
Norah Alballa

COVID-19 is a disease-causing coronavirus strain that emerged in December 2019 that led to an ongoing global pandemic. The ability to anticipate the pandemic’s path is critical. This is important in order to determine how to combat and track its spread. COVID-19 data is an example of time-series data where several methods can be applied for forecasting. Although various time-series forecasting models are available, it is difficult to draw broad theoretical conclusions regarding their relative merits. This paper presents an empirical evaluation of several time-series models for forecasting COVID-19 cases, recoveries, and deaths in Saudi Arabia. In particular, seven forecasting models were trained using autoregressive integrated moving average, TBATS, exponential smoothing, cubic spline, simple exponential smoothing Holt, and HoltWinters. The models were built using publicly available daily data of COVID-19 during the period of 24 March 2020 to 5 April 2021 reported in Saudi Arabia. The experimental results indicate that the ARIMA model had a smaller prediction error in forecasting confirmed cases, which is consistent with results reported in the literature, while cubic spline showed better predictions for recoveries and deaths. As more data become available, a fluctuation in the forecasting-accuracy metrics was observed, possibly due to abrupt changes in the data.


Author(s):  
Debasis Mithiya ◽  
Lakshmikanta Datta ◽  
Kumarjit Mandal

Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the second most important role in Indian agricultural economy, next to food grains, in terms of area and production. Oilseeds production in India has increased with time, however, the increasing demand for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign exchange. The need for addressing this deficit motivated a systematic study of the oilseeds economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average (ARIMA) model, which is the most widely used model for forecasting time series. One of the main drawbacks of this model is the presumption of linearity. The Group Method of Data Handling (GMDH) model has also been applied for forecasting the oilseeds production because it contains nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The comparison of modeling results shows that the GMDH model perform better than the ARIMA model in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The experimental results of both models indicate that the GMDH model is a powerful tool to handle the time series data and it provides a promising technique in time series forecasting methods.


Sign in / Sign up

Export Citation Format

Share Document