scholarly journals Manganese Limitations and the Enhanced Soil Carbon Sequestration of Temperate Rainforests

Author(s):  
J Marty Kranabetter ◽  
Tim Philpott ◽  
Dave Dunn

Abstract Manganese (Mn) has been identified as a regulatory bottleneck in carbon (C) turnover because of its role as an enzymatic co-factor in the oxidative decomposition of C by Mn-peroxidase (MnP). We tested this limit on decay using forest soils from coastal British Columbia with contrasting Mn concentrations. Moderately weathered soils (Brunisols) had an average 3.6-fold increase in MnP activity within the upper soil profile in comparison to highly weathered Podzols. Ordination of the Agaricomycete fungal community, which are responsible for MnP production, confirmed significant differences in assemblages between soil types for saprotrophic fungi, particularly species within Agaricales, Trechisporales and Auriculariales. Ectomycorrhizal fungi of Pseudotsuga menziesii were equally aligned with soil type and select taxa more abundant on Brunisols may have supplemented MnP activity. A laboratory incubation with an Mn amendment produced significant interactions in MnP activity by soil type. Surprisingly, MnP activity of both Brunisol substrates declined substantially with an amendment (-56% and − 40% for forest floor and mineral soil, respectively), in contrast to Podzols (-30% and + 26%, respectively). This inhibitory response was linked to considerable uptake of the added Mn in Brunisols, and underscores how Mn2+ likely operates directly on fungi as a regulator of mnp transcription for MnP production. Our study highlights a new perspective concerning the abiotic drivers underpinning the expansive soil C stocks across perhumid temperate rainforests of the Pacific Northwest.

2018 ◽  
Vol 115 (11) ◽  
pp. 2776-2781 ◽  
Author(s):  
Lucas E. Nave ◽  
Grant M. Domke ◽  
Kathryn L. Hofmeister ◽  
Umakant Mishra ◽  
Charles H. Perry ◽  
...  

Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


2015 ◽  
Vol 12 (5) ◽  
pp. 1615-1627 ◽  
Author(s):  
J. D. M. Speed ◽  
V. Martinsen ◽  
A. J. Hester ◽  
Ø. Holand ◽  
J. Mulder ◽  
...  

Abstract. Treelines differentiate vastly contrasting ecosystems: open tundra from closed forest. Treeline advance has implications for the climate system due to the impact of the transition from tundra to forest ecosystem on carbon (C) storage and albedo. Treeline advance has been seen to increase above-ground C stocks as low vegetation is replaced with trees but decrease organic soil C stocks as old carbon is decomposed. However, studies comparing across the treeline typically do not account for elevational variation within the ecotone. Here we sample ecosystem C stocks along an elevational gradient (970 to 1300 m), incorporating a large-scale and long-term livestock grazing experiment, in the southern Norwegian mountains. We investigate whether there are continuous or discontinuous changes in C storage across the treeline ecotone, and whether these are modulated by grazing. We find that vegetation C stock decreases with elevation, with a clear breakpoint between the forest line and treeline above which the vegetation C stock is constant. C stocks in organic surface horizons of the soil were higher above the treeline than in the forest, whereas C stocks in mineral soil horizons are unrelated to elevation. Total ecosystem C stocks also showed a discontinuous elevational pattern, increasing with elevation above the treeline (8 g m−2 per metre increase in elevation), but decreasing with elevation below the forest line (−15 g m−2 per metre increase in elevation), such that ecosystem C storage reaches a minimum between the forest line and treeline. We did not find any effect of short-term (12 years) grazing on the elevational patterns. Our findings demonstrate that patterns of C storage across the treeline are complex, and should be taken account of when estimating ecosystem C storage with shifting treelines.


2007 ◽  
Vol 87 (1) ◽  
pp. 93-102 ◽  
Author(s):  
J M Kranabetter ◽  
A M Macadam

The extent of carbon (C) storage in forests and the change in C stocks after harvesting are important considerations in the management of greenhouse gases. We measured changes in C storage over time (from postharvest, postburn, year 5, year 10 and year 20) in logging slash, forest floors, mineral soils and planted lodgepole pine (Pinus contorta var. latifolia) trees from six prescribed-burn plantations in north central British Columbia. After harvest, site C in these pools averaged 139 Mg ha-1, with approximately equal contributions from mineral soils (0–30 cm), forest floors and logging slash. Together these detrital pools declined by 71 Mg C ha-1, or 51% (28% directly from the broadcast burn, and a further 23% postburn), in the subsequent 20 yr. Postburn decay in logging slash was inferred by reductions in wood density (from 0.40 to 0.34 g cm-3), equal to an average k rate of 0.011 yr-1. Losses in forest floor C, amounting to more than 60% of the initial mass, were immediate and continued to year 5, with no reaccumulation evident by year 20. Mineral soil C concentrations initially fluctuated before declining by 25% through years 10 and 20. Overall, the reductions in C storage were offset by biomass accumulation of lodgepole pine, and we estimate these plantations had become a net sink for C before year 20, although total C storage was still less than postharvest levels. Key words: C sequestration, forest floors; coarse woody debris; soil organic matter


2014 ◽  
Vol 94 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Caroline M. Preston ◽  
Charlotte E. Norris ◽  
Guy M. Bernard ◽  
David W. Beilman ◽  
Sylvie A. Quideau ◽  
...  

Preston, C. M., Norris, C. E., Bernard, G. M., Beilman, D. W., Quideau, S. A. and Wasylishen, R. E. 2014. Carbon and nitrogen in the silt-size fraction and its HCl-hydrolysis residues from coarse-textured Canadian boreal forest soils. Can. J. Soil Sci. 94: 157–168. Improving the capacity to predict changes in soil carbon (C) stocks in the Canadian boreal forest requires better information on the characteristics and age of soil carbon, especially more slowly cycling C in mineral soil. We characterized C in the silt-size fraction, as representative of C stabilized by mineral association, previously isolated in a study of soil profiles of four sandy boreal jack pine sites. Silt-size fraction accounted for 13–31% of the total soil C and 12–51% of the total soil N content. Solid-state 13C nuclear magnetic resonance spectroscopy showed that silt C was mostly dominated by alkyl and O,N-alkyl C, with low proportions of aryl C in most samples. Thus, despite the importance of fire in this region, there was little evidence of storage of pyrogenic C. We used HCl hydrolysis to isolate the oldest C within the silt-size fraction. Consistent with previous studies, this procedure removed 21–74% of C and 74–93% of N, leaving residues composed mainly of alkyl and aryl C. However, it failed to isolate consistently old C; 11 out of 16 samples had recent 14C ages (fraction of modern 14C > 1), although C-horizon samples were older, with Δ14C from –17 to –476‰. Our results indicate relatively young ages for C associated with the silt-size fractions in these sites, for which mineral soil C storage may be primarily limited by good drainage and coarse soil texture, exacerbated by losses due to periodic wildfire.


2009 ◽  
Vol 39 (5) ◽  
pp. 897-907 ◽  
Author(s):  
Claudette H. Bois ◽  
Darren T. Janzen ◽  
Paul T. Sanborn ◽  
Arthur L. Fredeen

A study was conducted to determine if consideration of ecological site classification in combination with stand age would describe total ecosystem carbon (C) better than consideration of just stand age alone. The research was conducted in the 9250 ha University of Northern British Columbia/The University of British Columbia Aleza Lake Research Forest in central British Columbia. Over three field seasons (2003–2005), 38, 72, and 27 plots were established in mesic, subhygric, and hygric stands, respectively, with stand ages ranging from 5 to 350+ years. Mineral soil C stocks were significantly influenced by moisture regime, where hygric > subhygric > mesic (93, 77, and 65 t C·ha–1, respectively). Mineral soil and forest floor C stocks were not related to stand age, indicating their resilience to partial-cut and clear-cut forest harvesting systems historically implemented throughout the study area. Subhygric stands had the highest total ecosystem C stocks in the Aleza Lake Research Forest, having approximately 18% more C than mesic and hygric stands, principally due to higher mineral soil C stocks (than mesic stands) and improved C sequestration in large trees (over hygric stands). Consideration of ecological site classification in addition to stand age information improved total ecosystem C stock estimates over the use of stand age alone.


2010 ◽  
Vol 90 (2) ◽  
pp. 295-307 ◽  
Author(s):  
A H Nielsen ◽  
B. Elberling ◽  
M. Pejrup

Rates of podzolic soil development in sandy, temperate soils were quantified based on 14 soil pedons with five substrata from a beach ridge chronosequence near Jerup, Northern Denmark (57°N). Soil pH, organic carbon (C) as well as extractable iron (Fe) and aluminium (Al) were measured. The age of each pedon and soil stratum was measured by optically stimulated luminescence (OSL) dating and used to estimate soil development rates. Soils were divided into five groups from Typic Haplorthods and Entic Alorthods with a mean OSL age of 2965 ± 294 yr to Typic Quartzipsamments with a mean OSL age of 22 ± 11 yr. Acidification rates during the first 200 yr were ~1.9 pH units per 100 yr in the A horizons and C-sequestration rates were ~25 g C m-2 yr-1 (excluding litter accumulation). After ~1500 yr, the mineral soil C stocks stabilised around 13.0 ± 2.0 kg C m-2. Translocation rates of Al into B horizons were ~0.3 kg Al m-2 per 1000 yr, while translocation rates for Fe were scattered. Our study illustrates the potential of OSL dating in chronosequence studies to quantify soil development rates.Key words: Soil development rates, chronosequence, OSL-dating, C-sequestration rates and translocation rates


2005 ◽  
Vol 85 (Special Issue) ◽  
pp. 523-530 ◽  
Author(s):  
C. M. Monreal ◽  
J. D. Etchevers ◽  
M. Acosta ◽  
C. Hidalgo ◽  
J. Padilla ◽  
...  

Information on C stocks in agriculture and forest ecosystems in hillside landscapes is limited. The objective of this study was to develop and test field methods to measure above- and below-ground C stocks in hillside landscapes. Above-ground biomass in agricultural system was determined by measuring weight of residues left after crop harvest. In degraded secondary forests, tree biomass was estimated using allometric equations developed from in situ measurements. Herbs + bushes and litter dry weight were measured in two 0.25-m2 quadrats located within one 100-m2 treed plots. Carbon stocks were determined after chemical analysis of plant tissue and soil samples by dry combustion. Geo-referenced cores were taken inside a 1-m-diameter soil sampling clock that allows for spatial and temporal monitoring of soil C changes. The clock was marked with 12 divisions to establish the exact location of present and future sampling points. The below-ground fraction of C (mineral soil and fine roots) amounted to nearly 95% of the total C stock in agricultural systems and between 57 and 82% in the case of forest systems. Soil C stocks in hillside agricultural soils were higher than those found in forested soils with 70% of the C stored below-ground residing in the 0–45 cm of soil. The field method detected differences in C stocks in pools associated with various vegetations and soils in hillside ecosystems. Key words: Soil carbon, belowground carbon, sampling clock, hillside agriculture, Mexico


2020 ◽  
Author(s):  
Mike Beare ◽  
Erin Lawrence-Smith ◽  
Denis Curtin ◽  
Sam McNally ◽  
Frank Kelliher ◽  
...  

<p><span>The global atmospheric concentration of CO<sub>2</sub> and other greenhouse gases (GHG) is steadily increasing. It is estimated that, worldwide, soil C sequestration could offset GHG emissions by 400–1200 Mt C per year. Relative to 1990, New Zealand’s CH<sub>4</sub> and N<sub>2</sub>O emissions in 2013 had increased by 7% and 23% respectively, which translates to an annual emission increase of 1.09 Mt C that could be offset by a similar annual increase in soil C stock. Recent research has shown that some New Zealand pastoral soils are under-saturated in SOC. Subsurface soils (15–30 cm depth) typically have a greater soil C saturation deficit than topsoil (0-30 cm) because plant C inputs (roots) are lower. Using management practices that expose more of the under-saturated soil to higher C inputs could result in increased soil C storage and stabilisation.</span></p><p><span>Pasture renewal (destruction and re-establishment of pasture) is promoted to livestock farmers to improve pasture performance. This typically involves shallow cultivation or direct drilling to establish new grass. Whereas shallow cultivation of soil typically results in a loss of SOC, deeper full inversion tillage (FIT) of soil would result in the burial of C-rich topsoil in closer proximity to mineral material that has a higher stabilisation capacity.  Buried SOC is expected to have a slower decomposition rate owing to less variable temperatures and more anoxic conditions. Deep FIT would also bring under-saturated mineral soil to the surface, where the deposition of SOC from high producing pastures could increase the stabilisation of SOC.  Both the slower turnover of buried SOM and greater stabilisation of new carbon on under-saturated minerals at the soil surface are expected to result in increased SOC sequestration. </span></p><p><span>There is a lack of experimental data to directly address the effect of FIT on soil C stocks in pastoral soils. We applied a simple empirical model to predicting changes in soil C stocks following a one-off application of FIT (30 cm) during pasture renewal. The model accounts for the decomposition of SOC in buried topsoil and the accumulation of C in the new topsoil (inverted subsoil). The model was used to derive national estimates of soil C sequestration under different scenarios of C accumulation efficiency, farmer adoption of FIT and pasture renewal rates.</span></p><p>Our modelled estimates suggest that 32 Mt C could be sequestered over 20 years following a one-time application of FIT (0-30 cm) to 2 M ha of High Producing Grasslands on suitable New Zealand soils. This estimate is based on 100% accumulation efficiency (i.e. topsoil C stocks are returned to pre-inversion levels within 20 years) and a 10% annual rate of pasture renewal. In the absence of direct experimental evidence, a more conservative estimate is warranted, where topsoil C stocks are projected to return to 80% of pre-inversion levels, thus sequestering 20 Mt C. This paper will present our modelled estimates of SOC sequestration during FIT pasture renewal and discuss the potential benefits and adverse effects of deploying this management practice.</p>


2016 ◽  
Vol 46 (12) ◽  
pp. 1459-1473 ◽  
Author(s):  
Line Tau Strand ◽  
Ingeborg Callesen ◽  
Lise Dalsgaard ◽  
Heleen A. de Wit

Relationships between soil C and N stocks and soil formation, climate, and vegetation were investigated in a gridded database connected to the National Forest Inventory in Norway. For mineral soil orders, C and N stocks were estimated to be 11.1–19.3 kg C·m−2 and 0.41–0.78 kg N·m−2, respectively, declining in the following order: Gleysols > Podzols > Brunisols > Regosols. Organic peat-type soils stored, on average, 31.3 kg C·m−2 and 1.10 kg N·m−2, whereas shallow Organic folisols stored, on average, 10.2 kg C·m−2 and 0.34 kg N·m−2. For Norway’s 120 000 km2 of forest, the total of soil C stocks was estimated to be 1.83 Gt C, with a 95% CI of 1.71–1.95 Gt C. Podzolic soils comprise the largest soil group and store approximately 50% of the forest soil C. Sixty percent of the soil C stock in Podzolic soils was stored in the mineral soil, increasing with temperature and precipitation. Poorly drained soil types store approximately 47% of the total forest soil C in Norway. Soils with water saturation have large C stocks mainly in the forest floor, suggesting that they are more susceptible to forest management and environmental change. Soil C stocks under pine and spruce forests were similar, although pine forests had larger C stocks in the forest floor, while spruce forests had the highest C stocks in the mineral soil compartment. C stocks in the forest floor increase from dry to moist ground vegetation, while ground vegetation nutrient classes reflect better the C and N stocks in the mineral soil.


2017 ◽  
Vol 47 (8) ◽  
pp. 1140-1144 ◽  
Author(s):  
Cindy E. Prescott ◽  
Anya Reid ◽  
Shu Yao Wu ◽  
Marie-Charlotte Nilsson

Mechanical site preparation is assumed to reduce soil C stocks by increasing the rate at which the displaced organic material decomposes, but the evidence is equivocal. We measured rates of C loss of forest-floor material in mesh bags either placed on the surface or buried in the mineral soil at four sites in different regional climates in British Columbia. During the 3-year incubation, buried forest-floor material lost between 5% and 15% more C mass than material on the surface, with the greatest difference occurring at the site with the lowest annual precipitation. Studies of the long-term fate of buried and surface humus are needed to understand the net effects of site preparation on soil C stocks.


Sign in / Sign up

Export Citation Format

Share Document