Intratracheal Transplantation of Trophoblast Stem Cells Attenuates Acute Lung Injury in Mice

2020 ◽  
Author(s):  
Junwen Han ◽  
Gu Li ◽  
Minmin Hou ◽  
Min-Young Kwon ◽  
Kevin Xiong ◽  
...  

Abstract BackgroundAcute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) have been shown to possess immune privilege, immunomodulation, and the potential of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI.MethodsALI was induced by intratracheal delivery of Bleomycin (BLM) in mice. At day 3 after exposure to BLM, pre-labeled TSCs or Fibroblasts (FBs) were intratracheally administered into the lungs. At day 7 after exposure to BLM, histological analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays , respectively. Flow cytometry was utilized to assess engraftment of TSCs and cell apoptosis.Results Histological analyses of the lungs displayed a reduction in cellularity and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine in the injured lungs. The levels of IL-6 and MCP-1 in BALF were decreased in ALI mice receiving TSCs, compared with ALI mice that received PBS or FBs. Terminal deoxynucleotidyl transferase dUTP nick end labeling confirmed that TSCs significantly reduced BLM-induced apoptosis of lung tissue in vivo and epithelial cells in vitro . Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. ConclusionIntratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junwen Han ◽  
Gu Li ◽  
Minmin Hou ◽  
Julie Ng ◽  
Min-Young Kwon ◽  
...  

Abstract Background Acute lung injury (ALI) is a common lung disorder that affects millions of people every year. The infiltration of inflammatory cells into the lungs and death of the alveolar epithelial cells are key factors to trigger a pathological cascade. Trophoblast stem cells (TSCs) are immune privileged, and demonstrate the capability of self-renewal and multipotency with differentiation into three germ layers. We hypothesized that intratracheal transplantation of TSCs may alleviate ALI. Methods ALI was induced by intratracheal delivery of bleomycin (BLM) in mice. After exposure to BLM, pre-labeled TSCs or fibroblasts (FBs) were intratracheally administered into the lungs. Analyses of the lungs were performed for inflammatory infiltrates, cell apoptosis, and engraftment of TSCs. Pro-inflammatory cytokines/chemokines of lung tissue and in bronchoalveolar lavage fluid (BALF) were also assessed. Results The lungs displayed a reduction in cellularity, with decreased CD45+ cells, and less thickening of the alveolar walls in ALI mice that received TSCs compared with ALI mice receiving PBS or FBs. TSCs decreased infiltration of neutrophils and macrophages, and the expression of interleukin (IL) 6, monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) in the injured lungs. The levels of inflammatory cytokines in BALF, particularly IL-6, were decreased in ALI mice receiving TSCs, compared to ALI mice that received PBS or FBs. TSCs also significantly reduced BLM-induced apoptosis of alveolar epithelial cells in vitro and in vivo. Transplanted TSCs integrated into the alveolar walls and expressed aquaporin 5 and prosurfactant protein C, markers for alveolar epithelial type I and II cells, respectively. Conclusion Intratracheal transplantation of TSCs into the lungs of mice after acute exposure to BLM reduced pulmonary inflammation and cell death. Furthermore, TSCs engrafted into the alveolar walls to form alveolar epithelial type I and II cells. These data support the use of TSCs for the treatment of ALI.


2021 ◽  
Author(s):  
shiying niu ◽  
changsheng cong ◽  
zhaopeng wang ◽  
meili sun ◽  
yueying zhang

Abstract Background Radiation-induced lung injury (RILI) is one of the most common complications of thoracic tumors radiotherapy. Since therapeutic strategies remains limited, the exploration of new approaches to treat RILI is on high demands. The use of bone mesenchymal stem cells (BMSCs) to treat RILI holds great promise thanks to their multidifferentiation and anti-inflammatory potential after injury. Here, we investigate the therapeutic potential of BMSCs in RILI. Methods Forty five C57BL/6 mice were randomly divided into groups. Except for the control group, all mice received chest irradiation. Within 24 hours after irradiation, BMSCs were injected into the tail vein of mice in BMSCs group. At 4 weeks after irradiation, all mice were dissected. HE staining and immunohistochemistry were used to observe the pathological changes of lung tissue and the expression of inflammatory factors. Immunofluorescence technique was used to detect whether BMSCs migrated to lung tissue and to verify their differentiation potential. The expression of Ang II and Ang (1-7) in lung tissue was detected by ELISA. The expression of MasR mRNA in lung tissue was detected by qRT-PCR. Western blotting was used to detect the expression of ACE2, ACE, AT1R and MAPK related proteins. Results we found that BMSCs significantly reduced RILI by HE and immunohistochemistry. Immunofluorescence results showed that BMSCs migrated to injuried lung tissue and differentiated into alveolar epithelial cells. Combined with qRT-PCR and Western blotting results showed BMSCs significantly up-regulated ACE2/Ang(1-7)/MasR axis and suppressed NF-κB/MAPK pathway. Conclusions The study demonstrated that BMSCs may be transplanted into damaged lung tissue where they differentiated into AEC II to regulate AngII/ACE2/Ang(1-7) axis and suppress NF-κB/MAPK pathway to alleviate RILI.


2004 ◽  
Vol 287 (2) ◽  
pp. L448-L453 ◽  
Author(s):  
Thomas Geiser ◽  
Masanobu Ishigaki ◽  
Coretta van Leer ◽  
Michael A. Matthay ◽  
V. Courtney Broaddus

Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H2O2 inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H2O2 also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H2O2-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H2O2, zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H2O2-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H2O2 inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.


2018 ◽  
Vol 17 (7) ◽  
pp. 975-983 ◽  
Author(s):  
Luiz Philippe da Silva Sergio ◽  
Andrezza Maria Côrtes Thomé ◽  
Larissa Alexsandra da Silva Neto Trajano ◽  
Andre Luiz Mencalha ◽  
Adenilson de Souza da Fonseca ◽  
...  

Acute lung injury (ALI) is defined as hyperinflammation that could occur from sepsis and lead to pulmonary permeability and edema, making them life-threatening diseases.


Sign in / Sign up

Export Citation Format

Share Document