scholarly journals Structure-activity mapping of the peptide- and force-dependent landscape of T-cell activation

Author(s):  
Polly Fordyce ◽  
Yinnian Feng ◽  
Xiang Zhao ◽  
Adam White ◽  
K. Garcia

Abstract Adaptive immunity relies on T lymphocytes that use αβ T-cell receptors (TCRs) to discriminate amongst peptides presented by MHC molecules (pMHCs). An enhanced ability to screen for pMHCs capable of inducing robust T-cell responses could have broad applications in diagnosing and treating immune diseases. T-cell activation in vivo relies on biomechanical forces to trigger activation by sparse antigenic pMHCs. However, in vitro screening tests potential pMHCs without force and at high (non-physiological) pMHC densities and thus often fails to predict potent agonists in vivo. Here, we present a technology that uses biomechanical force to initiate T-cell triggering in high throughput. BATTLES (Biomechanically-Assisted T-cell Triggering for Large-scale Exogenous-pMHC Screening) displays candidate pMHCs on spectrally encoded ‘smart beads’ capable of applying physiological loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T-cell responses. BATTLES can be used to explore basic T-cell mechanobiology and T cell-based immunotherapies.

Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5793-5800 ◽  
Author(s):  
Manoj Saini ◽  
Claire Pearson ◽  
Benedict Seddon

Abstract Interleukin-7 (IL-7) plays a central role in the homeostasis of the T-cell compartment by regulating T-cell survival and proliferation. Whether IL-7 can influence T-cell receptor (TCR) signaling in T cells remains controversial. Here, using IL-7–deficient hosts and TCR-transgenic T cells that conditionally express IL-7R, we examined antigen-specific T-cell responses in vitro and in vivo to viral infection and lymphopenia to determine whether IL-7 signaling influences TCR-triggered cell division events. In vitro, we could find no evidence that IL-7 signaling could costimulate T-cell activation over a broad range of conditions, suggesting that IL-7 does not directly tune TCR signaling. In vivo, however, we found an acute requirement for IL-7 signaling for efficiently triggering T-cell responses to influenza A virus challenge. Furthermore, we found that IL-7 was required for the enhanced homeostatic TCR signaling that drives lymphopenia-induced proliferation by a mechanism involving efficient contacts of T cells with dendritic cells. Consistent with this, saturating antigen-presenting capacity in vivo overcame the triggering defect in response to cognate peptide. Thus, we demonstrate a novel role for IL-7 in regulating T cell–dendritic cell interactions that is essential for both T-cell homeostasis and activation in vivo.


2011 ◽  
Vol 208 (3) ◽  
pp. 577-592 ◽  
Author(s):  
Li Wang ◽  
Rotem Rubinstein ◽  
Janet L. Lines ◽  
Anna Wasiuk ◽  
Cory Ahonen ◽  
...  

The immunoglobulin (Ig) superfamily consists of many critical immune regulators, including the B7 family ligands and receptors. In this study, we identify a novel and structurally distinct Ig superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated V-domain Ig suppressor of T cell activation (VISTA). VISTA is primarily expressed on hematopoietic cells, and VISTA expression is highly regulated on myeloid antigen-presenting cells (APCs) and T cells. A soluble VISTA-Ig fusion protein or VISTA expression on APCs inhibits T cell proliferation and cytokine production in vitro. A VISTA-specific monoclonal antibody interferes with VISTA-induced suppression of T cell responses by VISTA-expressing APCs in vitro. Furthermore, anti-VISTA treatment exacerbates the development of the T cell–mediated autoimmune disease experimental autoimmune encephalomyelitis in mice. Finally, VISTA overexpression on tumor cells interferes with protective antitumor immunity in vivo in mice. These findings show that VISTA, a novel immunoregulatory molecule, has functional activities that are nonredundant with other Ig superfamily members and may play a role in the development of autoimmunity and immune surveillance in cancer.


2021 ◽  
Author(s):  
Yinnian Feng ◽  
Xiang Zhao ◽  
Adam K. White ◽  
K. Christopher Garcia ◽  
Polly M. Fordyce

SUMMARYAdaptive immunity relies on T lymphocytes that use αβ T-cell receptors (TCRs) to discriminate amongst peptides presented by MHC molecules (pMHCs). An enhanced ability to screen for pMHCs capable of inducing robust T-cell responses could have broad applications in diagnosing and treating immune diseases. T cell activation relies on biomechanical forces to initiate triggering of the TCR. Yet, most in vitro screening technologies for antigenic peptides test potential pMHCs for T cell binding without force and thus are often not predictive of activating peptides. Here, we present a technology that uses biomechanical force to initiate T cell triggering in high throughput. BATTLES (Biomechanically-Assisted T-cell Triggering for Large-scale Exogenous-pMHC Screening) displays candidate pMHCs on spectrally encoded ‘smart beads’ capable of applying physiological loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T-cell responses. BATTLES can be used to explore basic T-cell mechanobiology and T cell-based immunotherapies.


Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1727-1734 ◽  
Author(s):  
Éric Aubin ◽  
Réal Lemieux ◽  
Renée Bazin

Abstract Several clinical studies done with intravenous immunoglobulin (IVIg)–treated autoimmune patients as well as several in vitro studies have revealed that IVIg can reduce polyclonal T-cell activation and modify their cytokine secretion pattern. However, their effect on (auto)antigen-specific T-cell responses has never been addressed directly. In the present work, we used an in vivo model of induction of antigen-specific T-cell responses and an in vitro antigen presentation system to study the effects of IVIg on T-cell responses. The results obtained showed that IVIg inhibited both the in vivo and in vitro antigen-specific T-cell responses but that this effect was the indirect consequence of a reduction in the antigen presentation ability of antigen-presenting cells. The inhibitory effect of IVIg was FcγRIIb-independent, suggesting that IVIg must interfere with activating FcγRs expressed on antigen-presenting cells to reduce their ability to present antigens. Such inhibition of T-cell responses by reducing antigen presentation may therefore contribute to the well-known anti-inflammatory effects of IVIg in autoimmune diseases.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Carolina Chiale ◽  
Anthony M. Marchese ◽  
Yoichi Furuya ◽  
Michael D. Robek

AbstractThe precise mechanism by which many virus-based vectors activate immune responses remains unknown. Dendritic cells (DCs) play key roles in priming T cell responses and controlling virus replication, but their functions in generating protective immunity following vaccination with viral vectors are not always well understood. We hypothesized that highly immunogenic viral vectors with identical cell entry pathways but unique replication mechanisms differentially infect and activate DCs to promote antigen presentation and activation of distinctive antigen-specific T cell responses. To evaluate differences in replication mechanisms, we utilized a rhabdovirus vector (vesicular stomatitis virus; VSV) and an alphavirus-rhabdovirus hybrid vector (virus-like vesicles; VLV), which replicates like an alphavirus but enters the cell via the VSV glycoprotein. We found that while virus replication promotes CD8+ T cell activation by VLV, replication is absolutely required for VSV-induced responses. DC subtypes were differentially infected in vitro with VSV and VLV, and displayed differences in activation following infection that were dependent on vector replication but were independent of interferon receptor signaling. Additionally, the ability of the alphavirus-based vector to generate functional CD8+ T cells in the absence of replication relied on cDC1 cells. These results highlight the differential activation of DCs following infection with unique viral vectors and indicate potentially discrete roles of DC subtypes in activating the immune response following immunization with vectors that have distinct replication mechanisms.


2018 ◽  
Vol 77 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Catriona T Prendergast ◽  
Agapitos Patakas ◽  
Shaima Al-Khabouri ◽  
Claire L McIntyre ◽  
Iain B McInnes ◽  
...  

ObjectivesSuccessful early intervention in rheumatoid arthritis (RA) with the aim of resetting immunological tolerance requires a clearer understanding of how specificity, cellular kinetics and spatial behaviour shape the evolution of articular T cell responses. We aimed to define initial seeding of articular CD4+ T cell responses in early experimental arthritis, evaluating their dynamic behaviour and interactions with dendritic cells (DCs) in the inflamed articular environment.MethodsAntigen-induced arthritis was used to model articular inflammation. Flow cytometry and PCR of T cell receptor (TCR) diversity genes allowed phenotypic analysis of infiltrating T cells. The dynamic interactions of T cells with joint residing DCs were visualised using intravital multiphoton microscopy.ResultsInitial recruitment of antigen-specific T cells into the joint was paralleled by accumulation of CD4+ T cells with diverse antigen-receptor expression and ability to produce tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) on mitogenic restimulation. A proportion of this infiltrate demonstrated slower motility speeds and engaged for longer periods with articular DCs in vivo. Abatacept treatment did not disrupt these interactions but did reduce T cell expression of inducible costimulatory (ICOS) molecule. We also demonstrated that non-specific CD4+ T cells could be recruited during these early articular events.ConclusionsWe demonstrate that CD4+ T cells engage with articular DCs supporting antigen specific T cell reactivation. This cellular dialogue can be targeted therapeutically to reduce local T cell activation.


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Katarzyna Piadel ◽  
Amin Haybatollahi ◽  
Angus George Dalgleish ◽  
Peter Lawrence Smith

The pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2817-2825 ◽  
Author(s):  
Chuanlin Ding ◽  
Li Wang ◽  
Jose Marroquin ◽  
Jun Yan

Abstract B cells are antibody (Ab)–secreting cells as well as potent antigen (Ag)–presenting cells that prime T-cell activation, which evokes great interest in their use for vaccine development. Here, we targeted ovalbumin (OVA) to B cells via CD19 and found that a single low dose of anti–CD19-OVA conjugates, but not isotype mAb-OVA, stimulated augmented CD4 and CD8 T-cell proliferation and expansion. Administration of TLR9 agonist CpG could significantly enhance long-term T-cell survival. Similar results were obtained when the tumor-associated Ag MUC1 was delivered to B cells. MUC1 transgenic (Tg) mice were previously found to lack effective T-cell help and produce low-titer of anti-MUC1 Abs after vaccination. Targeting MUC1 to B cells elicited high titer of anti-MUC1 Abs with different isotypes, predominantly IgG2a and IgG2b, in MUC1 Tg mice. The isotype switching of anti-MUC1 Ab was CD4 dependent. In addition, IFN-γ–producing CD8 T cells and in vivo cytolytic activity were significantly increased in these mice. The mice also showed significant resistance to MUC1+ lymphoma cell challenge both in the prophylactic and therapeutic settings. We conclude that Ags targeting to B cells stimulate CD4 and CD8 T-cell responses as well as Th-dependent humoral immune responses.


Sign in / Sign up

Export Citation Format

Share Document