scholarly journals Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in Upland cotton (Gossypium hirsutum L.)

2021 ◽  
Author(s):  
Xiaoli Geng ◽  
Yujie Qu ◽  
Yinhua Jia ◽  
Shoupu He ◽  
Zhaoe Pan ◽  
...  

Abstract Background: Heterosis has been extensively utilized in different crops and made a significant contribution to global food security. Genetic distance (GD) is one of the valuable criteria for selecting parents in hybrid breeding. The objectives of this study were to estimate the GD between parents using both simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers and to investigate the efficiency of the prediction of hybrid performance based on GD. The experiment comprised of four male parents, 282 female parents and 1128 F1, derived from NCII mating scheme. The hybrids, their parents and two check cultivars were evaluated for two years. Performance of F1, mid-parent heterosis (MPH), and best parent heterosis (BPH) were evaluated for ten agronomic and fiber quality traits, including plant height, boll weight, boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. Results: Heterosis was observed in all hybrids and, the traits like plant height, boll number, boll weight and lint percentage exhibited higher heterosis than the fiber quality traits. Correlations were significant between parental and F1 performances. The F­1 performances between three hybrid sets (Elite×Elite, Exotic×Elite, and Historic×Elite) showed significant differences in eight traits, including boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. The correlation of the GD assessed by both SSR and SNP markers was significantly positive. The cluster analysis based on GD results estimated using SNP showed that all the female parents divided into five groups and the F1 performance between these five groups showed significant differences in four traits, including lint percentage, micronaire, fiber strength, and fiber elongation ratio. The correlation between GD and F1 performance, MPH and BPH were significant for lint percentage and micronaire. Conclusions: Our results suggested that GD between parents could be helpful in heterosis prediction for certain traits. This study reveals that molecular marker analysis can serve as a basis for assigning germplasm into heterotic groups and to provide guidelines for parental selection in hybrid cotton breeding.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoli Geng ◽  
Yujie Qu ◽  
Yinhua Jia ◽  
Shoupu He ◽  
Zhaoe Pan ◽  
...  

Abstract Background Heterosis has been extensively utilized in different crops and made a significant contribution to global food security. Genetic distance (GD) is one of the valuable criteria for selecting parents in hybrid breeding. The objectives of this study were to estimate the GD between parents using both simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers and to investigate the efficiency of the prediction of hybrid performance based on GD. The experiment comprised of four male parents, 282 female parents and 1128 F1, derived from NCII mating scheme. The hybrids, their parents and two check cultivars were evaluated for two years. Performance of F1, mid-parent heterosis (MPH), and best parent heterosis (BPH) were evaluated for ten agronomic and fiber quality traits, including plant height, boll weight, boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. Results Heterosis was observed in all hybrids and, the traits like plant height, boll number, boll weight and lint percentage exhibited higher heterosis than the fiber quality traits. Correlations were significant between parental and F1 performances. The F1 performances between three hybrid sets (Elite×Elite, Exotic×Elite, and Historic×Elite) showed significant differences in eight traits, including boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. The correlation of the GD assessed by both SSR and SNP markers was significantly positive. The cluster analysis based on GD results estimated using SNP showed that all the female parents divided into five groups and the F1 performance between these five groups showed significant differences in four traits, including lint percentage, micronaire, fiber strength, and fiber elongation ratio. The correlation between GD and F1 performance, MPH and BPH were significant for lint percentage and micronaire. Conclusions Our results suggested that GD between parents could be helpful in heterosis prediction for certain traits. This study reveals that molecular marker analysis can serve as a basis for assigning germplasm into heterotic groups and to provide guidelines for parental selection in hybrid cotton breeding.


2020 ◽  
Author(s):  
Abdalla Sharkh ◽  
Zhonghua Teng ◽  
Peng Yang ◽  
Junrui Ma ◽  
Nsabiyumva Athanase ◽  
...  

Abstract Background Cotton is one of the most important cash crops in the world, depending on fiber quality, yield, seed oil and protein content. Identifying QTL for fiber related and other agronomic traits will facilitate the genetic improvement in cotton. Results In this study, forty-seven QTL for fiber related traits were identified across four different environments and six of these QTL were detected in more than one environment, including two for lint percentage (qLP-D03-1 and qLP-D09-1), two for fiber length (qFL-A07-2 and qFL-D11-1), and two for fiber micronaire (qFM-A08-1 and qFM-D11-1), respectively. Four QTL clusters contained 12 QTL were distributed on four chromosomes including two in At subgenome and two in the Dt subgenome. Moreover, thirteen QTL by environment interactions (QEI) were recognized, including one for lint percentage, five for fiber length, three for fiber strength, two for fiber micronaire, one for fiber uniformity and one for fiber elongation, respectively. ConclusionSix QTL were detected in more than one environment and two environmentally stable QTL (qLP-D03-1 and qFM-A08-1) interacted significantly environment. The QTL detected in more than one environment could be useful for further fine-mapping and marker assisted selection in cotton.


2020 ◽  
Author(s):  
Xiaoli Geng ◽  
Yujie Qu ◽  
Yinhua Jia ◽  
Shoupu He ◽  
Zhaoe Pan ◽  
...  

Abstract Background: Heterosis has been extensively utilized in different crops and made a significant contribution to global food security. Genetic distance (GD) is one of the valuable criteria for selecting parents in hybrid breeding. The objectives of this study were to estimate the GD between parents using both simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers and to investigate the efficiency of the prediction of hybrid performance based on GD. The experiment comprised of four male parents, 282 female parents and 1128 F1, derived from NCII mating scheme. The hybrids, their parents with two check cultivars were evaluated for two years. Performance of F1, mid-parent heterosis (MPH), and best parent heterosis (BPH) were evaluated for ten agronomic and fiber quality traits. Results: Heterosis was observed in all hybrids and, the traits like plant height, boll number, boll weight and lint percentage exhibited higher heterosis than the fiber quality traits. Correlations were significant between parental and F1 performances. The F­1 performances between three hybrid sets (Elite×Elite, Exotic×Elite, and Historic×Elite) showed significant differences in eight traits. The correlation of the GD assessed by both SSR and SNP markers was significantly positive. The cluster analysis based on GD results estimated using SNP showed that all the female parents divided into five groups and the F1 performance between these five groups showed significant differences in seven traits. The correlation between GD and F1 performance, MPH and BPH were significant for lint percentage and micronaire. Conclusions: Our results suggested that GD between parents could be helpful in heterosis prediction for certain traits. This study reveals that molecular marker analysis can serve as a basis for assigning germplasm into heterotic groups and to provide guidelines for parental selection in hybrid cotton breeding.


Author(s):  
Aziz Ullah ◽  
Amir Shakeel ◽  
Hafiz Ghulam Muhu-Din Ahmed ◽  
Muhammad Ali ◽  
Muhammad Majid Yar

The objective of the present study was to estimate general combining ability (GCA) of the parents and specific combining ability (SCA) of crosses for the development of high yielding cotton varieties. The study was carried out at the experimental area of Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad. A line × tester analysis was made to identify the superior general and specific combiners for seed cotton yield and fiber quality traits in upland cotton. Five lines/females (FH-114, FH-1000, CIM-448, CIM-707, NIAB-111) and three testers/males (TH-41-83, Cocker-307 and Allepo-41) were crossed to develop 15 F1 hybrids. These genotypes were evaluated along with parents in RCBD with three replications. The general combining ability (GCA) and specific combining ability (SCA) mean squares for seed cotton yield, lint percentage, fiber fineness, fiber strength and fiber length were significant. The fiber fineness showed greater importance of additive gene effect while seed cotton yield, lint percentage, fiber strength and fiber length exhibited non additive genetic effects. Parents FH-114 and NIAB-111 among lines and COKER-307 from testers were found as good general combiners for most of the traits. Hence, these parents proved worth to be used in hybridization and selection program for extracting desirable plants from segregating population. F1 crosses CIM-707 × COKER-307, CIM-707 × ALLEPO-41 and FH-1000 × COKER-307, by and large, exhibited their superiority for all traits studied and were noted as the best specific combiners. Therefore, these crosses may be preferred to improve several traits simultaneously by selection or may be used for hybrid cotton crop development


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohui Song ◽  
Guozhong Zhu ◽  
Sen Hou ◽  
Yamei Ren ◽  
Muhammad Waqas Amjid ◽  
...  

Fiber length, fiber strength, and fiber micronaire are the main fiber quality parameters in cotton. Thus, mining the elite and stable loci/alleles related to fiber quality traits and elucidating the relationship between the two may accelerate genetic improvement of fiber quality in cotton. Here, genome-wide association analysis (GWAS) was performed for fiber quality parameters based on phenotypic data, and 56,010 high-quality single nucleotide polymorphisms (SNPs) using 242 upland cotton accessions under 12 field environments were obtained. Phenotypic analysis exhibited that fiber length (FL) had a positive correlation with fiber strength (FS) and had a negative correlation with fiber micronaire (Mic). Genetic analysis also indicated that FL, FS, and Mic had high heritability of more than 80%. A total of 67 stable quantitative trait loci (QTLs) were identified through GWAS analysis, including 31 for FL, 21 for FS, and 22 for Mic. Of them, three pairs homologous QTLs were detected between A and D subgenomes, and seven co-located QTLs with two fiber quality parameters were found. Compared with the reported QTLs, 34 co-located with previous studies, and 33 were newly revealed. Integrated with transcriptome analysis, we selected 256, 244, and 149 candidate genes for FL, FS, and Mic, respectively. Gene Ontology (GO) analysis showed that most of the genes located in QTLs interval of the three fiber quality traits were involved in sugar biosynthesis, sugar metabolism, microtubule, and cytoskeleton organization, which played crucial roles in fiber development. Through correlation analysis between haplotypes and phenotypes, three genes (GH_A05G1494, GH_D11G3097, and GH_A05G1082) predominately expressed in fiber development stages were indicated to be potentially responsible for FL, FS, and Mic, respectively. The GH_A05G1494 encoded a protein containing SGS-domain, which is related to tubulin-binding and ubiquitin-protein ligase binding. The GH_D11G3097 encoded 20S proteasome beta subunit G1, and was involved in the ubiquitin-dependent protein catabolic process. The GH_A05G1082 encoded RAN binding protein 1 with a molecular function of GTPase activator activity. These results provide new insights and candidate loci/genes for the improvement of fiber quality in cotton.


Author(s):  
An-hui Guo ◽  
Ying Su ◽  
Yi Huang ◽  
Yu-mei Wang ◽  
Hu-shuai Nie ◽  
...  

Abstract Key message QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Abstract Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.) under salt stress and normal conditions. Based on three datasets of (1) salt stress, (2) normal growth, and (3) the difference value between salt stress and normal conditions, 51, 70, and 53 QTL were mapped, respectively. Three QTL for fiber length (FL) (qFL-Chr1-1, qFL-Chr5-5, and qFL-Chr24-4) were detected under both salt and normal conditions and explained 4.26%, 9.38%, and 3.87% of average phenotypic variation, respectively. Seven genes within intervals of two stable QTL (qFL-Chr1-1 and qFL-Chr5-5) were highly expressed in lines with extreme long fiber. A total of 35 QTL clusters comprised of 107 QTL were located on 18 chromosomes and exhibited pleiotropic effects. Thereinto, two clusters were responsible for improving five fiber quality traits, and 6 influenced FL and fiber strength (FS). The QTL with positive effect for fiber length exhibited active effects on fatty acid synthesis and elongation, but the ones with negative effect played passive roles on fatty acid degradation under salt stress.


2019 ◽  
Vol 56 (1) ◽  
pp. 26-36
Author(s):  
Muhammad Asghar Shah ◽  
Mubshar Hussain ◽  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Sami Ul-Allah ◽  
...  

AbstractIn cotton–wheat cropping system of Pakistan, wheat (Triticum aestivum L.) is harvested in late April; however, the optimum sowing time of Bt cotton is mid-March. This indicates a time difference of 4–6 weeks between the harvest of wheat and cotton sowing. It is hypothesized that this overlapping period may be managed by transplanting cotton seedlings (30–45 days old) in late April, after the harvest of wheat due to better performance of already established seedlings. To this end, this study was conducted to evaluate the allometric traits and fiber quality of transplanted Bt cotton after harvesting wheat in the cotton–wheat cropping system. The Bt cotton–wheat cropping systems were flat sown wheat (FSW)–conventionally tilled cotton, FSW–zero tilled cotton, ridge sown wheat–ridge transplanted cotton using 30- and 45-days-old seedlings, and bed sown wheat (BSW)–bed transplanted cotton (BTC) also using 30- and 45-days-old seedlings. The study was conducted at Vehari and Multan in Punjab, Pakistan. Bt cotton in BSW–BTC with 45-days-old seedlings showed better performance for allometric (leaf area index; (LAI), net assimilation rate; (NAR), and crop growth rate; (CGR)), seed cotton yield, and fiber traits (fiber uniformity, fiber length, fiber strength, and fiber fineness) in comparison to other treatments. Most of the fiber quality traits were positively correlated with allometric traits and biological yield (dry matter yield at maturity) at both locations, except correlations of CGR and LAI with fiber fineness and fiber length and NAR with fiber length. As plant growth and fiber quality of transplanted cotton was significantly higher than conventionally grown cotton, our data indicate transplanting is an interesting management practice for improving productivity in wheat–cotton cropping systems.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Mayara Fávero Cotrim ◽  
Francisco José Correa Farias ◽  
Luiz Paulo de Carvalho ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Carlos Antonio da Silva Junior ◽  
...  

Studies on the adaptability and stability are fundamental for plant breeding as they are an alternative to reduce the effects of genotypes x environments interaction (GxE). Moreover, they help identify cultivars with predictable behavior, which are responsive to environmental improvements, subsidizing cultivar recommendation. This study aimed to investigate the genotypes x environments interaction in cotton genotypes grown in the Brazilian Cerrado and identify genotypes for favorable and unfavorable environments. During the 2013/2014 and 2014/2015 seasons, 19 competition trials were carried out with cotton in a randomized block design, with 12 treatments, and four replications. The traits cotton seed yield, fiber percentage, fiber length, and fiber strength were evaluated. Results revealed significant GxE interaction for all the fiber traits evaluated. Genotype BRS 369 RF revealed general adaptability and high predictability for the fiber traits evaluated.


2019 ◽  
Author(s):  
Lingling Ma ◽  
Ying Su ◽  
Yumei Wang ◽  
Hushai Nie ◽  
Yupeng Cui ◽  
...  

ABSTRACTIn present study, F14 recombinant inbred line (RIL) population was backcrossed to paternal parent for a paternal backcross (BC/P) population, deriving from one Upland cotton hybrid. Three repetitive BC/P field trials and one BC/M field trial were performed including both two BC populations and the original RIL population. Totally, for fiber quality traits, 24 novel QTLs were detected and 13 QTLs validated previous results. And 19 quantitative trait loci (QTL) in BC/P populations explained 5.01% - 22.09% of phenotype variation (PV). Among the 19 QTLs, three QTLs were detected simultaneously in BC/M population. The present study provided novel alleles of male parent for fiber quality traits with positive genetic effects. Particularly, qFS-Chr3-1 controlling fiber strength explained 22.09% of PV in BC/P population, which increased 0.48 cN/tex for fiber strength. A total of seven, two, eight, two and six QTLs explained over 10.00% of PV for fiber length, fiber uniformity, fiber strength, fiber elongation and fiber micronaire, respectively. In the RIL population, six common QTLs detected in more than one environment such as qFL-Chr1-2, qFS-Chr5-1, qFS-Chr9-1, qFS-Chr21-1, qFM-Chr9-1 and qFM-Chr9-2. Two common QTLs of qFE-Chr2-2 (TMB2386-SWU12343) and qFM-Chr9-1 (NAU2873-CGR6771) explained 22.42% and 21.91% of PV. In addition, a total of 142 and 46 epistatic QTLs and QTL × environments (E-QTLs and QQEs) were identified in RIL-P and BC/P populations, respectively.


Sign in / Sign up

Export Citation Format

Share Document