Transplanting improves the allometry and fiber quality of Bt cotton in cotton–wheat cropping system

2019 ◽  
Vol 56 (1) ◽  
pp. 26-36
Author(s):  
Muhammad Asghar Shah ◽  
Mubshar Hussain ◽  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Sami Ul-Allah ◽  
...  

AbstractIn cotton–wheat cropping system of Pakistan, wheat (Triticum aestivum L.) is harvested in late April; however, the optimum sowing time of Bt cotton is mid-March. This indicates a time difference of 4–6 weeks between the harvest of wheat and cotton sowing. It is hypothesized that this overlapping period may be managed by transplanting cotton seedlings (30–45 days old) in late April, after the harvest of wheat due to better performance of already established seedlings. To this end, this study was conducted to evaluate the allometric traits and fiber quality of transplanted Bt cotton after harvesting wheat in the cotton–wheat cropping system. The Bt cotton–wheat cropping systems were flat sown wheat (FSW)–conventionally tilled cotton, FSW–zero tilled cotton, ridge sown wheat–ridge transplanted cotton using 30- and 45-days-old seedlings, and bed sown wheat (BSW)–bed transplanted cotton (BTC) also using 30- and 45-days-old seedlings. The study was conducted at Vehari and Multan in Punjab, Pakistan. Bt cotton in BSW–BTC with 45-days-old seedlings showed better performance for allometric (leaf area index; (LAI), net assimilation rate; (NAR), and crop growth rate; (CGR)), seed cotton yield, and fiber traits (fiber uniformity, fiber length, fiber strength, and fiber fineness) in comparison to other treatments. Most of the fiber quality traits were positively correlated with allometric traits and biological yield (dry matter yield at maturity) at both locations, except correlations of CGR and LAI with fiber fineness and fiber length and NAR with fiber length. As plant growth and fiber quality of transplanted cotton was significantly higher than conventionally grown cotton, our data indicate transplanting is an interesting management practice for improving productivity in wheat–cotton cropping systems.

2010 ◽  
Vol 25 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Dimitrios Bilalis ◽  
Sotiria Patsiali ◽  
Anestis Karkanis ◽  
Aristidis Konstantas ◽  
Marios Makris ◽  
...  

AbstractOrganic cotton is a new industrial crop product. Field experiments were conducted to determine the effects of cultural systems and varieties on the growth, fiber quality and yield components of cotton crop (Gossypium hirsutum L.). The experiments, conducted during 2006 and 2007, were laid out in a split plot design with four replicates, two main plots (organic and conventional system) and two sub-plots (cotton varieties: Athena and Campo). There were no significant differences between the organic and conventional system for cotton growth, yield and fiber quality. The results suggest that the soil N released from both the inorganic (80:40:40 kg ha−1 N:P2O5:K2O) and organic pool (green manure) were sufficient to maintain good growth. Inferior-quality fiber was produced in the variety. Campo, which had the lowest fiber fineness (micronaire), strength, length and reflection. In addition, this variety had the highest fiber elongation and yellowness. There were no significant differences between varieties as far as uniformity and leaf trash ratio are concerned. A positive correlation was observed between fiber strength and length. However, a negative correlation was found between lint yield and fiber strength.


Author(s):  
Sevtap Kartal ◽  
Lale Efe

In this study carried out in 2015 under conditions of Kahramanmaraş province of Turkey, it was aimed at determining the effects of sawgin and rollergin methods on fiber quality in some cotton (Gossypium hirsutum L.) cultivars. In the study varieties of Lydia, Carisma, PG 2018, Flash, BA 440, BA 119 Maraş-92 and Erşan-92 were used as experimental materials. The trial was established according to factorial randomized block design with four replications. Seed cottons obtained from the trial were ginned in the rollergin and sawgin machines. In the obtained lint cotton samples, a number of fiber characteristics were determined by using HVI and AFIS fiber analysis devices. Ginnig outturn (38.6%), fiber length (30.21 mm), uniformity index (86.02%), fiber strength (31.76 g tex-1), spinning consistency index (SCI) (104.68) determined by using rollergin system were found higher than ones determined by using sawgin system (respectivelly 37.2%, 29.78 mm, 84.61%, 30.97 g tex-1, 94.50). Short fiber index (3.47%) and nep count (59.40 number g-1) obtained from rollergin system were found lower than ones obtained from sawgin system (respectivelly 4.38% and 119.34 number g-1). As a result it can be said that the rollergin method has positive effect on ginnig outturn, fiber length, uniformity index, fiber strength, spinning consistency index, short fiber index and nep count. When fiber length, fiber strength, spinning consistency index, nep size are considered together the best variety was Lydia cv. (respectivelly 30.87 mm, 32.56 g tex-1, 104.25, 675.63 μm). Ginning outturn, uniformity index, short fiber index, total particule number, dust particule number and trash count are considered together the best variety was Erşan-92 cv. (respectivelly 39.4%, 86.02%, 3.48%, 231.4 number g-1, 206.3 number g-1, 25.13 number g-1). For fiber fineness the best varieties were BA 119 and Maraş-92 cv. (respectivelly 4.78 mic. and 4.80 mic.).


Author(s):  
V. Ramamurthy ◽  
G. Sangeetha ◽  
B. Shyla

Background: Horizontal expansion of area under pulses at country level has very little possibilities. This necessitates exploring alternate ways to increase the area and production of pulses. Bt cotton is the major cash crop grown in large area in Southern transition zone of Karnataka on red soils. Bt cotton hybrids are sown at wide row spacing hence provide sufficient space for cultivation of short duration pulses like cowpea and horse gram.Methods: On-farm trials were carried out in medium deep red soils of Basavanagiri village of Mysore district, Karnataka during 2014-15 and 2015-16. There were six treatments consists of Bt cotton with farmers practice (T1), Bt cotton with best management practice (T2), sole cowpea (T3), sole horse gram (T4), Bt cotton intercropped with cowpea (T5) and Bt cotton inter cropped with horse gram (T6). On-farm trials were laid out by using RCBD design in five farmer fields, which served as replications.Result: On-farm investigation indicated that there was no much difference between cotton yield sole crop with BMP and inter cropped cotton yield. However, cotton yield was significantly lower in farmers practice over BMP. Intercropping of cowpea and horse gram with Bt cotton resulted in higher cotton equivalent yield, LER and production efficiency over the sole cotton cropping system. This was due to the wider spacing of the cotton and better resource use efficiency in intercropping system.


Author(s):  
Firdoz Shahana ◽  
M. Goverdhan ◽  
S. Sridevi ◽  
B. Joseph

A field experiment was conducted during 2016-17 at AICRP on Integrated Farming Systems, Regional Sugarcane and Rice Research Station, Rudrur to diversify existing rice-rice cropping system with less water requiring crops under irrigated dry conditions for vertisols of Northern Telangana Zone. The experiment was laid out with twelve cropping systems as treatments in Randomized Block Design (RBD) with three replications. The twelve combinations of cropping systems tested during kharif and rabi seasons were rice – rice (check), maize + soybean (2:4) – tomato, maize + soybean (2:4) - rice, maize - sunflower + chickpea (2:4), maize - chickpea, Bt cotton + soybean (1:2) on broadbed – sesame + groundnut (2:4), Bt cotton - sesame + blackgram (2:4), soybean – wheat, soybean – sunflower + chickpea (2:4), turmeric – sesame, turmeric + soybean (1:2) on flat bed – bajra and turmeric + soybean (1:2) on broadbed – sesame + blackgram (2:4). On system basis, significantly higher productivity in terms of rice equivalent yield (REY) of 23830 kg ha-1 was recorded with turmeric+soybean (1:2) BBF– sesame+blackgram (2:4) turmeric – sesame cropping sequence. However it was on par with turmeric – sesame and turmeric + soybean (1:2) on flat bed – bajra crop sequence with productivity of 23332 kg ha-1 and 21389 kg ha-1 respectively. Lower productivity was recorded with rice-rice cropping system (10725 kg ha-1). Significantly higher system net returns were recorded with Bt. cotton – sesame + black gram (2:4) on BBF (Rs222838 ha-1) closely followed by Bt Cotton + Soybean (1:2) (BBF) - Sesamum + Groundnut (2:4) (Rs221160 ha-1) and Maize+soybean (2:4)–tomato (Rs212909 ha-1). Lower system net returns were recorded in conventional rice-rice system (Rs88179 ha-1). Bt. cotton – sesame + black gram (2:4) and Bt Cotton + Soybean (1:2) (BBF)- Sesamum + Groundnut ((2:4) and Maize+soybean (2:4)–tomato were economically superior with REE of 152.71%, 150.81% and 141.45%. Rice- Rice cropping adopted by majority of farmers is less productive and economically inferior indicating wider scope of diversifying existing rice- rice cropping system with high productive, economically viable cropping systems in vertisols of Northern Telangana Zone.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Mayara Fávero Cotrim ◽  
Francisco José Correa Farias ◽  
Luiz Paulo de Carvalho ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Carlos Antonio da Silva Junior ◽  
...  

Studies on the adaptability and stability are fundamental for plant breeding as they are an alternative to reduce the effects of genotypes x environments interaction (GxE). Moreover, they help identify cultivars with predictable behavior, which are responsive to environmental improvements, subsidizing cultivar recommendation. This study aimed to investigate the genotypes x environments interaction in cotton genotypes grown in the Brazilian Cerrado and identify genotypes for favorable and unfavorable environments. During the 2013/2014 and 2014/2015 seasons, 19 competition trials were carried out with cotton in a randomized block design, with 12 treatments, and four replications. The traits cotton seed yield, fiber percentage, fiber length, and fiber strength were evaluated. Results revealed significant GxE interaction for all the fiber traits evaluated. Genotype BRS 369 RF revealed general adaptability and high predictability for the fiber traits evaluated.


1988 ◽  
Vol 58 (8) ◽  
pp. 433-438 ◽  
Author(s):  
J. K. Dever ◽  
J. R. Gannaway ◽  
R. V. Baker

Seven sources of cotton representing a wide range of fiber properties were roller ginned, saw ginned, or saw ginned plus processed through tandem saw lint cleaners or through an aggressive carding-type cleaner (Cottonmaster1). Lint cleaner induced changes in fiber length and nep count were compared to fiber property measurements from roller ginned samples. Fiber length deterioration from saw ginning was negatively correlated with fiber strength. Fiber breakage in lint cleaning was positively correlated with fiber fineness. Resistance to fiber length damage in ginning was explained best by fiber strength and fineness, or an estimate of individual fiber strength. Initial and final nep level were related to fineness, nonlint content, and upper quartile length, but an increase in neps due to lint cleaning had no significant relationship to fiber properties.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Muhammad Naeem ◽  
Noman Mehboob ◽  
Muhammad Farooq ◽  
Shahid Farooq ◽  
Shahid Hussain ◽  
...  

This two-year study observed the influence of various barley-based cropping systems on soil physicochemical properties, allometric traits and biomass production of barley sown under different tillage systems. Barley was cultivated in different cropping systems (CS), i.e., fallow-barley (fallow-B), maize-barley (maize-B), cotton-barley (cotton-B), mungbean-barley (mungbean-B) and sorghum-barley (sorghum-B) under zero tillage (ZT), minimum tillage (MT), strip tillage (ST), conventional tillage (CT) and bed-sowing (BS). Interaction between different CS and tillage systems (TS) positively influenced soil bulk density (BD), total porosity, available phosphorus (P), ammonical and nitrate nitrogen (NH4-N and NO3-N), available potassium (K), allometric traits and biomass production of barley. The highest soil BD along with lower total porosity were noted in ZT leading to lesser leaf area index (LAI), leaf area duration (LAD), specific leaf area (SLA), crop growth rate (CGR) and net assimilation rate (NAR) of barley. Nonetheless, bed-sown barley produced the highest biomass due to better crop allometry and soil physical conditions. The highest postharvest soil available P, NH4-N, NO3-N, and K were recorded for zero-tilled barley, while BS followed by CT recorded the lowest nutrient contents. Barley in mungbean-B CS with BS produced the highest biomass, while the lowest biomass production was recorded for barely sown in fallow-B cropping system with ZT. In conclusion, barley sown after mungbean (mungbean-B cropping system) with BS seems a pragmatic choice for improving soil fertility and subsequently soil health.


Author(s):  
Noureddine Benkeblia

Abstract Vegetable production in Jamaica, and throughout the world, faces many diseases that affect the yield and the quality of the fresh harvest produce. However, some diseases are more predominant than others. The most observed diseases of vegetables are anthracnose, leaf spot, club root, downy mildew, gray mold, mosaic and geminiviruses, early blight, septoria leaf spot and leaf rusts. Nevertheless, other diseases can also be found seriously affecting the grown vegetable. Greenhouse cropping systems are also affected by similar and other diseases such as septoria leaf spot, early blight, anthracnose, fusarium wilt, verticillium wilt, late blight, bacterial spot, bacterial speck, bacterial canker, gray mold, leaf mold, powdery mildew and elephant's foot disease. Although not specific to the country, other diseases are also found more frequently than others, and the frequency varies with the region and the cropping system (indoor or outdoor).


2018 ◽  
Author(s):  
Ali Baghdadi ◽  
Ridzwan A. Halim ◽  
Ali Ghasemzadeh ◽  
Mohd Fauzi Ramlan ◽  
Siti Zaharah Sakimin

Corn silage is an important feed for intensive ruminant production but the growing of corn has relied heavily on the use of chemical fertilizer. Sustainable crop production requires a careful management of all nutrient sources available in a farm, particularly in corn-based cropping systems. Experiments were conducted to determine the appropriate technology of corn-legume intercropping with supplemental use of chemical, organic manure, and biofertilizer. Combining chemical fertilizers with chicken manure in a 50:50 ratio and application of 50% NPK+ 50%, chicken manure (CM)+ biofertilizer (BF) resulted in similar dry matter (DM) yield with the 100% NPK treatment. Inorganic fertilizer (100% NPK) gave the highest DM yield (13.86 t/ha) of forage among single fertilizer treatments and it outyielded the chicken manure (100% CM) (9.74 t/ha) treatment. However, when CM was combined with NPK, the DM yield of forage (13.86 t/ha) and was the same as the 100% NPK (13.68 t/ha). Combinations of NPK and chicken manure resulted in increased plant height; crop growth rate (CGR) and leaf area index (LAI) compared to CM alone but was similar to 100% NPK application. The ratio of 50% CM + 50% NPK and 50%CM+50%NPK+BF recorded protein yield similar to those of conventional fertilizer. Similarly, CP content was not significantly different among 100% NPK and 50% CM+50% NPK. Use of biofertilizers had no significant impact on improving either yield or quality of forage fertilized with inorganic or organic fertilizers. Lactic acid responded differently to different fertilizer application and was significantly higher than the no fertilizer plots. Treatments with an application of biofertilizer and combination of biofertilizer with NPK or CM treatments gave higher values of acetylene reduction assay (ARA) (compared to sole chemical and sole organic manure fertilizers. Overall, evidence recorded from this study prove that corn-soybean intercrops could increase forage quantity and quality, produce higher total protein yield, decrease requirements for protein supplements and chemical fertilizer compared to the corn monoculture with a combination of chicken manure and chemical fertilizer.


Sign in / Sign up

Export Citation Format

Share Document