scholarly journals Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome

2020 ◽  
Author(s):  
Nycole A Copping ◽  
Jill L Silverman

Abstract Background: Angelman Syndrome (AS) is a rare genetic disorder characterized by impaired communication, motor and balance deficits, intellectual disabilities, recurring seizures and abnormal sleep patterns. The genetic cause of AS is neuronal specific loss of expression of UBE3A (ubiquitin-protein ligase E6-AP), an imprinted gene. Seizure and sleep disorders are highly prevalent (>80%) in the AS population. The present experiments were designed to identify translational, neurophysiological outcome measures in a model of AS. Methods: We used the exon-2 deletion mouse (Ube3a-del) on a C57BL/6J background to assess seizure, sleep and electrophysiological phenotypes. Seizure susceptibility has been reported in Ube3a-del mice with a variety of seizure induction methods. Here, we provoked seizures by a single high-dose injection of 80 mg/kg pentylenetetrazole. Novel experiments included the utilization of wireless telemetry devices to acquire global electroencephalogram (EEG) and neurophysiological data on electrographic seizures, power spectra, light-dark cycles, sleep stages and sleep spindles in Ube3a-del and WT mice. Results: Ube3a-del mice exhibited reduced seizure threshold compared to WT. EEG illustrated that Ube3a-del mice had increased epileptiform spiking activity and delta power, which corroborates findings from other laboratories and recapitulates clinical reports in AS. This is the first report to use a cortical surface-based recording by a wireless telemetry device over tethered/fixed head-mount depth recordings. Less time in both paradoxical and slow-wave sleep, longer latencies to paradoxical sleep stages, and total less sleep time in Ube3a-del mice were observed compared to WT. For the first time, we detected fewer sleep spindles in the AS mouse model. Limitations: This study was limited to the exon 2 deletion mouse model, future work will investigate the rat model of AS, containing a complete Ube3a deletion and pair EEG with behavior. Conclusions: Our data enhance rigor and translatability as our study provides important corroboration of previous reports on epileptiform and elevated delta power. For the first-time we report neurophysiological phenotypes collected via translational methodology. Furthermore, this is the first report of reduced sleep spindles, a critical marker of memory consolidation during sleep, in an AS model. Our results are useful outcomes for therapeutic testing.

2021 ◽  
Author(s):  
Nycole A Copping ◽  
Jill L Silverman

Abstract Background: Angelman Syndrome (AS) is a rare genetic disorder characterized by impaired communication, motor and balance deficits, intellectual disabilities, recurring seizures and abnormal sleep patterns. The genetic cause of AS is neuronal specific loss of expression of UBE3A (ubiquitin-protein ligase E6-AP), an imprinted gene. Seizure and sleep disorders are highly prevalent (>80%) in the AS population. The present experiments were designed to identify translational, neurophysiological outcome measures in a model of AS.Methods: We used the exon-2 deletion mouse (Ube3a-del) on a C57BL/6J background to assess seizure, sleep and electrophysiological phenotypes. Seizure susceptibility has been reported in Ube3a-del mice with a variety of seizure induction methods. Here, we provoked seizures by a single high-dose injection of 80 mg/kg pentylenetetrazole. Novel experiments included the utilization of wireless telemetry devices to acquire global electroencephalogram (EEG) and neurophysiological data on electrographic seizures, power spectra, light-dark cycles, sleep stages and sleep spindles in Ube3a-del and WT mice.Results: Ube3a-del mice exhibited reduced seizure threshold compared to WT. EEG illustrated that Ube3a-del mice had increased epileptiform spiking activity and delta power, which corroborates findings from other laboratories and recapitulates clinical reports in AS. This is the first report to use a cortical surface-based recording by a wireless telemetry device over tethered/fixed head-mount depth recordings. Less time in both paradoxical and slow-wave sleep, longer latencies to paradoxical sleep stages, and total less sleep time in Ube3a-del mice were observed compared to WT. For the first time, we detected fewer sleep spindles in the AS mouse model. Limitations: This study was limited to the exon 2 deletion mouse model, future work will investigate the rat model of AS, containing a complete Ube3a deletion and pair EEG with behavior.Conclusions: Our data enhance rigor and translatability as our study provides important corroboration of previous reports on epileptiform and elevated delta power. For the first-time we report neurophysiological phenotypes collected via translational methodology. Furthermore, this is the first report of reduced sleep spindles, a critical marker of memory consolidation during sleep, in an AS model. Our results are useful outcomes for therapeutic testing.


2020 ◽  
Author(s):  
Nycole A Copping ◽  
Jill L Silverman

Abstract Background: Angelman Syndrome (AS) is a rare genetic disorder characterized by impaired communication, motor and balance deficits, intellectual disabilities, recurring seizures and abnormal sleep patterns. The genetic cause of AS is neuronal specific loss of expression of UBE3A (ubiquitin-protein ligase E6-AP), an imprinted gene. Seizure and sleep disorders are highly prevalent (>80%) in the AS population. The present experiments were designed to identify translational, neurophysiological outcome measures in a model of AS.Methods: We used the exon-2 deletion mouse (Ube3a-del) on a C57BL/6J background to assess seizure, sleep and electrophysiological phenotypes. Seizure susceptibility has been reported in Ube3a-del mice with a variety of seizure induction methods. Here, we provoked seizures by a single high-dose injection of 80 mg/kg pentylenetetrazole. Novel experiments included the utilization of wireless telemetry devices to acquire global electroencephalogram (EEG) and neurophysiological data on electrographic seizures, power spectra, light/dark cycles, sleep stages and sleep spindles in Ube3a-del and WT mice.Results: Ube3a-del mice exhibited reduced seizure threshold compared to WT. EEG illustrated that Ube3a-del mice had increased epileptiform spiking activity and delta power, which corroborates findings from other laboratories and recapitulates clinical reports in AS. This is the first report to use a cortical surface-based recording by a wireless telemetry device over tethered/fixed head-mount depth recordings. Less time in both paradoxical and slow-wave sleep, longer latencies to paradoxical sleep stages, and total less sleep time in Ube3a-del mice were observed compared to WT. For the first time, we detected fewer sleep spindles in the AS mouse model.Limitations: This study was limited to the exon 2 deletion mouse model, future work will investigate the rat model of AS, containing a complete Ube3a deletion and pair EEG with behavior.Conclusions: Our data enhance rigor and translatability as our study provides important corroboration of previous reports on epileptiform and elevated delta power. For the first-time we report neurophysiological phenotypes collected via translational methodology. Furthermore, this is the first report of reduced sleep spindles, a critical marker of memory consolidation during sleep, in an AS model. Our results are useful outcomes for therapeutic testing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
N. A. Copping ◽  
J. L. Silverman

Abstract Background Angelman Syndrome (AS) is a rare genetic disorder characterized by impaired communication, motor and balance deficits, intellectual disabilities, recurring seizures and abnormal sleep patterns. The genetic cause of AS is neuronal-specific loss of expression of UBE3A (ubiquitin-protein ligase E6-AP), an imprinted gene. Seizure and sleep disorders are highly prevalent (> 80%) in the AS population. The present experiments were designed to identify translational, neurophysiological outcome measures in a model of AS. Methods We used the exon-2 deletion mouse (Ube3a-del) on a C57BL/6J background to assess seizure, sleep and electrophysiological phenotypes. Seizure susceptibility has been reported in Ube3a-del mice with a variety of seizure induction methods. Here, we provoked seizures by a single high-dose injection of 80 mg/kg pentylenetetrazole. Novel experiments included the utilization of wireless telemetry devices to acquire global electroencephalogram (EEG) and neurophysiological data on electrographic seizures, power spectra, light–dark cycles, sleep stages and sleep spindles in Ube3a-del and WT mice. Results Ube3a-del mice exhibited reduced seizure threshold compared to WT. EEG illustrated that Ube3a-del mice had increased epileptiform spiking activity and delta power, which corroborates findings from other laboratories and recapitulates clinical reports in AS. This is the first report to use a cortical surface-based recording by a wireless telemetry device over tethered/fixed head-mount depth recordings. Less time in both paradoxical and slow-wave sleep, longer latencies to paradoxical sleep stages and total less sleep time in Ube3a-del mice were observed compared to WT. For the first time, we detected fewer sleep spindles in the AS mouse model. Limitations This study was limited to the exon 2 deletion mouse model, and future work will investigate the rat model of AS, containing a complete Ube3a deletion and pair EEG with behavior. Conclusions Our data enhance rigor and translatability as our study provides important corroboration of previous reports on epileptiform and elevated delta power. For the first time we report neurophysiological phenotypes collected via translational methodology. Furthermore, this is the first report of reduced sleep spindles, a critical marker of memory consolidation during sleep, in an AS model. Our results are useful outcomes for therapeutic testing.


ENTOMON ◽  
2020 ◽  
Vol 44 (4) ◽  
pp. 311-314
Author(s):  
A. Roobakkumar ◽  
H.G. Seetharama ◽  
P. Krishna Reddy ◽  
M.S. Uma ◽  
A. P. Ranjith

Rinamba opacicollis Cameron (Hymenoptera: Braconidae) was collected from Chikkamagaluru, Karnataka, India for the first time from the larvae of white stem borer, Xylotrechus quadripes Chevrolat infesting arabica coffee. Its role in the biological or integrated control of X. quadripes remains to be evaluated. White stem borer could be the first host record of this parasitoid all over the world.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3171
Author(s):  
Sandrine M. Caputo ◽  
Dominique Telly ◽  
Adrien Briaux ◽  
Julie Sesen ◽  
Maurizio Ceppi ◽  
...  

Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Farshid O Sirjani ◽  
Edwin E Lewis

Abstract A new dipterous pest is reported, for the first time, on commercial pistachios from Sirjan, Kerman province, Iran. The genus of the insect was determined to be Resseliella Seitner (Diptera: Cecidomyiidae). Adults are light brown to brown in color and 0.8–1.5 mm in length with females, generally, slightly larger than males. Females have an elongated ovipositor, which is characteristic of the genus. Larvae are orange in color, 2–3 mm in length in the later instars, feed under bark without inducing galls, and cause branch dieback on trees of various ages. Brown to black discolorations are observed on plant tissues under bark where the larvae feed. Infestations observed on current and the previous—year’s growths, ranged from 0.5 to 1.2 cm in diameter, and all located in outer branches. Dry leaves and fruit clusters on infested branches remain attached, which may be used to recognize infestation by the gall midge. Dark-colored, sunken spots with splits on the bark located at the base of the wilted sections of the shoots also are symptoms of Resseliella sp. larval activity. Species-level identification of the gall midge is currently underway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lilach Simchi ◽  
Hanoch Kaphzan

AbstractAngelman syndrome (AS) is a genetic neurodevelopmental disorder due to the absence of the E3-ligase protein, UBE3A. Inappropriate social interactions, usually hyper-sociability, is a part of that syndrome. In addition, clinical surveys and case reports describe aggressive behavior in AS individuals as a severe difficulty for caretakers. A mouse model for AS recapitulates most of the human AS phenotypes. However, very few studies utilized this mouse model for investigating affiliative social behavior, and not even a single study examined aggressive behavior. Hence, the aim of the herein study was to examine affiliative and aggressive social behavior. For that, we utilized a battery of behavioral paradigms, and performed detailed analyses of these behaviors. AS mice exhibited a unique characteristic of reduced habituation towards a social stimulus in comparison to their wild-type (WT) littermates. However, overall there were no additional marked differences in affiliative social behavior. In contrast to the mild changes in affiliative behavior, there was a striking enhanced aggression in the AS mice compared to their WT littermates. The herein findings emphasize the use of AS mouse model in characterizing and measuring inappropriate aggressive behavior, and suggests these as tools for investigating therapeutic interventions aimed at attenuating aggressive behavior.


2021 ◽  
Vol 9 (6) ◽  
pp. 1256
Author(s):  
Teresa Letra Mateus ◽  
Maria João Gargaté ◽  
Anabela Vilares ◽  
Idalina Ferreira ◽  
Manuela Rodrigues ◽  
...  

Cystic echinococcosis (CE) is a zoonosis that is prevalent worldwide. It is considered endemic in Portugal but few studies have been performed on Echinococcus granulosus sensu lato and their hosts. In this study, CE cysts are reported for the first time in a free-living wild boar (Sus scrofa) in Portugal. The presence of the metacestodes in the liver of the wild boar was identified by morphological features, microscopic examination and molecular analysis. The sequencing of part of the DNA nuclear ribosomal internal transcribed spacer-1 (ITS-1) region revealed a G5 genotype that presently corresponds to Echinococcus ortleppi. This is the first report of E. ortleppi in Portugal and to the best of the authors’ knowledge, in Europe. These results suggest that wild boar may be a host of CE, namely, crossing the livestock–wildlife interface, which has important public health implications. Wildlife reservoirs must be taken into account as CE hosts and surveillance of game as well as health education for hunters should be implemented using a One Health approach, with implementation of feasible and tailor-made control strategies, namely, proper elimination of byproducts in the field.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hüseyin Can ◽  
Sedef Erkunt Alak ◽  
Ahmet Efe Köseoğlu ◽  
Umut Şahar ◽  
Berna Bostanbaş ◽  
...  

Abstract Background Cytidine monophospho-n-acetylneuraminic acid hydroxylase (CMAH) gene associated with blood groups in cats encodes CMAH enzyme that converts Neu5Ac to Neu5Gc. Although variations in CMAH gene of pedigree cats have been revealed, the presence/lack of them in non-pedigree stray cats is unknown. Therefore, the present study aimed to investigate the variations in CMAH gene and the quantity of Neu5Ac and Neu5Gc on erythrocytes of non-pedigree stray cats (n:12) living in İzmir, Turkey. Also, the frequency of blood types was determined in 76 stray cats including 12 cats that were used for CMAH and Neu5A/Neu5Gc analysis. Results In total, 14 SNPs were detected in 5’UTR as well as in exon 2, 4, 9, 10, 11 and 12 of CMAH gene. Among these SNPs, -495 C > T in 5’UTR was detected for the first time as heterozygous in type A and AB cats, and homozygous and heterozygous in type B cats. The remaining 13 that have been detected in previous studies were also found as homozygous or heterozygous. Both Neu5Gc and Neu5Ac were detected in type A and AB cats. In type B cats, only Neu5Ac was detected. Among two type AB cats, the level of Neu5Ac was found higher in cat carrying heterozygous form (T/C) of 1392T > C. The prevalence of type B cats (67.1 %) was higher than others. Conclusions The presence of a new SNP as well as previous SNPs indicates that more variations can be found in stray cats with a more comprehensive study in the future. Also, the high prevalence of type B cats demonstrates the possible risk of neonatal isoerythrolysis among stray cats living in İzmir, Turkey.


Sign in / Sign up

Export Citation Format

Share Document