scholarly journals The Bradyrhizobium Sp. LmicA16 Type VI Secretion System is Required for Efficient Nodulation of Lupinus Spp.

Author(s):  
Tighilt L. ◽  
Boulila F. ◽  
De Sousa BFS ◽  
Giraud E ◽  
Ruiz-Argüeso T ◽  
...  

Abstract Many bacteria of the genus Bradyrhizobium are capable of inducing nodules in legumes. In this work, the importance of a type VI secretion system (T6SS) in a symbiotic strain of the genus Bradyrhizobium is described. T6SS of Bradyrhizobium sp. LmicA16 (A16) is necessary for efficient nodulation with Lupinus micranthus and L. angustifolius . A mutant in the gene vgrG, coding for a component of the T6SS nanostructure, induced less nodules and smaller plants than the wild type strain (wt) and was less competitive when co-inoculated with the wt strain. A16 T6SS genes are organized in a 26 kb DNA region in two divergent gene clusters of nine genes each. One of these genes codes for a protein (Tsb1) of unknown function but containing a methyltransferase domain. A tsb1 mutant showed an intermediate symbiotic phenotype regarding vgrG mutant and higher mucoidy and motility than the wt strain in free living conditions. T6SS promoter fusions to the lacZ reporter indicate expression in nodules but not in free living cells grown in different media and conditions. The analysis of nodule structure revealed that the level of nodule colonization was significantly reduced in the mutants with respect to the wt strain.

Nitrogen ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 81-98
Author(s):  
Martina Lardi ◽  
Yilei Liu ◽  
Sebastian Hug ◽  
Samanta Bolzan de Campos ◽  
Leo Eberl ◽  
...  

Rhizobia have two major life styles, one as free-living bacteria in the soil, and the other as bacteroids within the root/stem nodules of host legumes where they convert atmospheric nitrogen into ammonia. In the soil, rhizobia have to cope with changing and sometimes stressful environmental conditions, such as nitrogen limitation. In the beta-rhizobial strain Paraburkholderia phymatum STM815, the alternative sigma factor σ54 (or RpoN) has recently been shown to control nitrogenase activity during symbiosis with Phaseolus vulgaris. In this study, we determined P. phymatum’s σ54 regulon under nitrogen-limited free-living conditions. Among the genes significantly downregulated in the absence of σ54, we found a C4-dicarboxylate carrier protein (Bphy_0225), a flagellar biosynthesis cluster (Bphy_2926-64), and one of the two type VI secretion systems (T6SS-b) present in the P. phymatum STM815 genome (Bphy_5978-97). A defined σ54 mutant was unable to grow on C4 dicarboxylates as sole carbon source and was less motile compared to the wild-type strain. Both defects could be complemented by introducing rpoNin trans. Using promoter reporter gene fusions, we also confirmed that the expression of the T6SS-b cluster is regulated by σ54. Accordingly, we show that σ54 affects in vitro competitiveness of P. phymatum STM815 against Paraburkholderia diazotrophica.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Yannick R. Brunet ◽  
Christophe S. Bernard ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the −10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the −10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species.


2011 ◽  
Vol 79 (7) ◽  
pp. 2941-2949 ◽  
Author(s):  
Sarah T. Miyata ◽  
Maya Kitaoka ◽  
Teresa M. Brooks ◽  
Steven B. McAuley ◽  
Stefan Pukatzki

ABSTRACTThe type VI secretion system (T6SS) is recognized as an important virulence mechanism in several Gram-negative pathogens. InVibrio cholerae, the causative agent of the diarrheal disease cholera, a minimum of three gene clusters—one main cluster and two auxiliary clusters—are required to form a functional T6SS apparatus capable of conferring virulence toward eukaryotic and prokaryotic hosts. Despite an increasing understanding of the components that make up the T6SS apparatus, little is known about the regulation of these genes and the gene products delivered by this nanomachine. VasH is an important regulator of theV. choleraeT6SS. Here, we present evidence that VasH regulates the production of a newly identified protein, VasX, which in turn requires a functional T6SS for secretion. Deletion ofvasXdoes not affect export or enzymatic function of the structural T6SS proteins Hcp and VgrG-1, suggesting that VasX is dispensable for the assembly of the physical translocon complex. VasX localizes to the bacterial membrane and interacts with membrane lipids. We present VasX as a novel virulence factor of the T6SS, as aV. choleraemutant lackingvasXexhibits a phenotype of attenuated virulence towardDictyostelium discoideum.


2012 ◽  
Vol 79 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Erwan Gueguen ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a versatile secretion machine dedicated to various functions in Gram-negative bacteria, including virulence toward eukaryotic cells and antibacterial activity. Activity of T6SS might be followed in vitro by the release of two proteins, Hcp and VgrG, in the culture supernatant. Citrobacter rodentium , a rodent pathogen, harbors two T6SS gene clusters, cts1 and cts2 . Reporter fusion and Hcp release assays suggested that the CTS1 T6SS was not produced or not active. The cts1 locus is composed of two divergent operons. We therefore developed a new vector allowing us to swap the two divergent endogenous promoters by P tac and P BAD using the λ red recombination technology. Artificial induction of both promoters demonstrated that the CTS1 T6SS is functional as shown by the Hcp release assay and confers on C. rodentium a growth advantage in antibacterial competition experiments with Escherichia coli .


2019 ◽  
Author(s):  
Mary Nia Santos ◽  
Shu-Ting Cho ◽  
Chih-Feng Wu ◽  
Chun-Ju Chang ◽  
Chih-Horng Kuo ◽  
...  

AbstractType VI secretion system (T6SS) is a contractile nanoweapon employed by many Proteobacteria to deliver effectors to kill or inhibit their competitors. One T6SS gene, vgrG, encodes a spike protein for effector translocation and is often present as multiple copies in bacterial genomes. Our phylogenomic analyses sampled 48 genomes across diverse Proteobacteria lineages and found ∼70% of them encode multiple VgrGs, yet only four genomes have nearly identical paralogs. Among these four, Agrobacterium tumefaciens 1D1609 has the highest vgrG redundancy. Compared to A. tumefaciens model strain C58 which harbors two vgrG genes, 1D1609 encodes four vgrG genes (i.e. vgrGa-d) with each adjacent to different putative effector genes. Thus, 1D1609 was selected to investigate the functional redundancy and specificity of multiple vgrG genes and their associated effectors. Secretion assay of single and multiple vgrG deletion mutants demonstrated that these four vgrGs are functionally redundant in mediating T6SS secretion. By analyzing various vgrG mutants, we found that all except for the divergent vgrGb could contribute to 1D1609’s antibacterial activity. Further characterizations of putative effector-immunity gene pairs revealed that vgrGa-associated gene 2 (v2a) encodes an AHH family nuclease and serves as the major antibacterial toxin. Interestingly, C58’s VgrG2 shares 99% amino acid sequence identity with 1D1609’s VgrGa, VgrGc and VgrGd. This high sequence similarity allows 1D1609 to use an exogenous VgrG delivered from C58 to kill another competing bacterium. Taken together, Agrobacterium can use highly similar VgrGs, either produced endogenously or injected from its close relatives, for T6SS-mediated interbacterial competition.Author’s SummarySelective pressure drives bacteria to develop adaptive strategies, which include competitive and cooperative behaviors. Type VI secretion system (T6SS) is one powerful antibacterial and anti-host nanoweapon employed by many Gram-negative bacteria for growth advantages or pathogenesis. A T6SS-harboring bacterium can encode one to multiple VgrG proteins for delivery of cognate effector(s) but the prevalence and biological significance of having sequence redundant vgrGs have not been comprehensively explored. In this study, we investigated the extensiveness of having multicopy vgrG genes for effector delivery among diverse Proteobacteria with T6SS. Moreover, a plant pathogenic bacterium Agrobacterium tumefaciens strain 1D1609 with highest vgrG redundancy was selected for detailed characterization of the roles of multiple VgrGs in T6SS secretion and antibacterial activity. We revealed that the majority of Proteobacterial genomes harbor multiple copies of vgrG and the expansion of vgrG gene clusters contributed to effector diversity and functional redundancy. Furthermore, the near identical VgrG proteins between 1D1609 and its sibling strain C58 can be exchanged for effector delivery in killing another competing bacterium. Such strategy in using exchangeable effector carriers injected from its isogenic sibling or close relatives during T6SS attacks may be a beneficial strategy for agrobacteria to compete in their ecological niche.


2015 ◽  
Vol 28 (4) ◽  
pp. 420-431 ◽  
Author(s):  
Divine Y. Shyntum ◽  
Jacques Theron ◽  
Stephanus N. Venter ◽  
Lucy N. Moleleki ◽  
Ian K. Toth ◽  
...  

Type VI secretion systems (T6SSs) are a class of macromolecular machines that are recognized as an important virulence mechanism in several gram-negative bacteria. The genome of Pantoea ananatis LMG 2665T, a pathogen of pineapple fruit and onion plants, carries two gene clusters whose predicted products have homology with T6SS-associated gene products from other bacteria. Nothing is known regarding the role of these T6SS-1 and T6SS-3 gene clusters in the biology of P. ananatis. Here, we present evidence that T6SS-1 plays an important role in the pathogenicity of P. ananatis LMG 2665T in onion plants, while a strain lacking T6SS-3 remains as pathogenic as the wild-type strain. We also investigated the role of the T6SS-1 system in bacterial competition, the results of which indicated that several bacteria compete less efficiently against wild-type LMG 2665T than a strain lacking T6SS-1. Additionally, we demonstrated that these phenotypes of strain LMG 2665T were reliant on the core T6SS products TssA and TssD (Hcp), thus indicating that the T6SS-1 gene cluster encodes a functioning T6SS. Collectively, our data provide the first evidence demonstrating that the T6SS-1 system is a virulence determinant of P. ananatis LMG 2665T and plays a role in bacterial competition.


2018 ◽  
Vol 115 (49) ◽  
pp. 12519-12524 ◽  
Author(s):  
Panayiota Pissaridou ◽  
Luke P. Allsopp ◽  
Sarah Wettstadt ◽  
Sophie A. Howard ◽  
Despoina A. I. Mavridou ◽  
...  

The type VI secretion system (T6SS) is a supramolecular complex involved in the delivery of potent toxins during bacterial competition. Pseudomonas aeruginosa possesses three T6SS gene clusters and several hcp and vgrG gene islands, the latter encoding the spike at the T6SS tip. The vgrG1b cluster encompasses seven genes whose organization and sequences are highly conserved in P. aeruginosa genomes, except for two genes that we called tse7 and tsi7. We show that Tse7 is a Tox-GHH2 domain nuclease which is distinct from other T6SS nucleases identified thus far. Expression of this toxin induces the SOS response, causes growth arrest and ultimately results in DNA degradation. The cytotoxic domain of Tse7 lies at its C terminus, while the N terminus is a predicted PAAR domain. We find that Tse7 sits on the tip of the VgrG1b spike and that specific residues at the PAAR–VgrG1b interface are essential for VgrG1b-dependent delivery of Tse7 into bacterial prey. We also show that the delivery of Tse7 is dependent on the H1-T6SS cluster, and injection of the nuclease into bacterial competitors is deployed for interbacterial competition. Tsi7, the cognate immunity protein, protects the producer from the deleterious effect of Tse7 through a direct protein–protein interaction so specific that toxin/immunity pairs are effective only if they originate from the same P. aeruginosa isolate. Overall, our study highlights the diversity of T6SS effectors, the exquisite fitting of toxins on the tip of the T6SS, and the specificity in Tsi7-dependent protection, suggesting a role in interstrain competition.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren Speare ◽  
Stephanie Smith ◽  
Fernanda Salvato ◽  
Manuel Kleiner ◽  
Alecia N. Septer

ABSTRACT Symbiotic bacteria use diverse strategies to compete for host colonization sites. However, little is known about the environmental cues that modulate interbacterial competition as they transition between free-living and host-associated lifestyles. We used the mutualistic relationship between Eupyrmna scolopes squid and Vibrio fischeri bacteria to investigate how intraspecific competition is regulated as symbionts move from the seawater to a host-like environment. We recently reported that V. fischeri uses a type VI secretion system (T6SS) for intraspecific competition during host colonization. Here, we investigated how environmental viscosity impacts T6SS-mediated competition by using a liquid hydrogel medium that mimics the viscous host environment. Our data demonstrate that although the T6SS is functionally inactive when cells are grown under low-viscosity liquid conditions similar to those found in seawater, exposure to a host-like high-viscosity hydrogel enhances T6SS expression and sheath formation, activates T6SS-mediated killing in as little as 30 min, and promotes the coaggregation of competing genotypes. Finally, the use of mass spectrometry-based proteomics revealed insights into how cells may prepare for T6SS competition during this habitat transition. These findings, which establish the use of a new hydrogel culture condition for studying T6SS interactions, indicate that V. fischeri rapidly responds to the physical environment to activate the competitive mechanisms used during host colonization. IMPORTANCE Bacteria often engage in interference competition to gain access to an ecological niche, such as a host. However, little is known about how the physical environment experienced by free-living or host-associated bacteria influences such competition. We used the bioluminescent squid symbiont Vibrio fischeri to study how environmental viscosity impacts bacterial competition. Our results suggest that upon transition from a planktonic environment to a host-like environment, V. fischeri cells activate their type VI secretion system, a contact-dependent interbacterial nanoweapon, to eliminate natural competitors. This work shows that competitor cells form aggregates under host-like conditions, thereby facilitating the contact required for killing, and reveals how V. fischeri regulates a key competitive mechanism in response to the physical environment.


2021 ◽  
Author(s):  
L. Tighilt ◽  
F. Boulila ◽  
B. F. S. De Sousa ◽  
E. Giraud ◽  
T. Ruiz-Argüeso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document