scholarly journals Comparison of Continuous and Pulsed Wave Lasers in Keyhole Welding of Stainless-Steel to Aluminium

Author(s):  
Julio Coroado ◽  
Supriyo Ganguly ◽  
Stewart Williams ◽  
Wojciech Suder ◽  
Sonia Meco ◽  
...  

Abstract A continuous wave (CW) and a nanosecond pulsed wave (PW) lasers were used to join 1 mm thick sheets of SS304L (SS) austenitic stainless-steel to AA5251 (Al) aluminium alloy in an overlap joint configuration. The weld shape (penetration depth and width), intermetallic compounds concentration, weld quality (cracking and porosity) and mechanical strength were correlated with the process energy and compared between each laser temporal mode. Successful CW joints were produced with the SS sheet on top of the Al, but the opposite configuration revealed to be impossible for the range of parameters tested. The PW joints were successful with the Al sheet on top of SS, but all the joints cracked at the interface when the opposite configuration was used. The mechanical tests showed that even though it is possible to achieve higher tensile shear load in CW welds due to the larger bonding area, the load per unit of weld length revealed to be almost 5x higher for PW welds at similar applied energy.

Author(s):  
Julio Coroado ◽  
Supriyo Ganguly ◽  
Stewart Williams ◽  
Wojciech Suder ◽  
Sonia Meco ◽  
...  

AbstractA continuous wave (CW) and a nanosecond pulsed wave (PW) lasers were used to join 1-mm thick sheets of SS304L (SS) austenitic stainless-steel to AA5251 (Al) aluminium alloy in an overlap joint configuration. The weld shape (penetration depth and width), intermetallic compounds concentration, weld quality (cracking and porosity) and mechanical strength were correlated with the process energy and compared between each laser temporal mode. Successful CW joints were produced with the SS sheet on top of the Al, but the opposite configuration revealed to be impossible for the range of parameters tested. The PW joints were successful with the Al sheet on top of SS, but all the joints cracked at the interface when the opposite configuration was used. The mechanical tests showed that even though it is possible to achieve higher tensile shear load in CW welds due to the larger bonding area, the tensile shear strength revealed to be almost 5 × higher for PW welds at similar applied energy.


2013 ◽  
Vol 652-654 ◽  
pp. 2326-2329 ◽  
Author(s):  
Hui Liu ◽  
Xue Dong Xu ◽  
Xiao Qing Zhang

The experimental investigations on resistance spot welding are presented for 316 stainless steel. The influence of spot welding parameters (welding time, electrode force and welding current) on the tensile shear load and the diameter of nugget have been researched, based on an orthogonal test and analysis method. The results show that welding current has significant influence on the tensile shear load and diameter of nugget, and then is electrode force, welding time in turn. The optimum parameters are as follows: welding time is 5 cycles, electrode force is 3.5KN and welding current is 5.5KA. And the maximum tensile shear force of joint is up to 13.55KN.


Author(s):  
Vignesh Krishnan ◽  
Elayaperumal Ayyasamy ◽  
Velmurugan Paramasivam

This paper examines the impact of welding parameters on tensile shear fracture load, nugget geometry and microstructure of resistance spot welds (RSW) of austenitic stainless steel AISI 316 L and duplex stainless steel 2205 under lap shear loading condition. The macroscopic examination resulted that many of the nugget lengths were nearer to and higher than the AWS recommended value 4√t and failed at higher tensile shear load. Nugget height for DSS 2205 side was higher in comparison with AISI 316 L due to higher thermal conductivity of duplex stainless steel. Three welding parameters mainly welding current of 9 kA, heating cycle of 9 and electrode tip diameter of 6 mm were discovered as most effectual parameters on the tensile shear load and microstructure of weldments. Heterogeneous hardness was observed in the fusion zone due to the transition of equiaxed to columnar grains takes place in the both sides of nugget edge. DSS HAZ nearby BM observed higher hardness and ASS HAZ nearby BM reported lower hardness. WMZ Microstructure confirmed that thickness of austenite layers increased with heat input. Also, an unmixed zone in the microstructure identified as HAZ which contains delta ferrite. Scanning Electron Microscope (SEM) images in the nugget zone for different welding parameters confirmed that Intra-Granular Austenite (IGA) highly developed at higher welding current. SEM fractrograph for the tensile sheared specimens at higher and lower heat input confirmed the ductile type fracture even failed at Inter-Facial (IF) mode. Nugget area and nugget hardness were positively correlated with Tensile Shear Fracture Load (TSFL).


Author(s):  
Ruixiu Guo ◽  
Wei Hu ◽  
Qi Song ◽  
Shude Ji ◽  
Weiwei Qi ◽  
...  
Keyword(s):  

Author(s):  
Corey D. Hernandez ◽  
Thomas S. Gates ◽  
Seun K. Kahng

This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10–20 μm. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.


2013 ◽  
Vol 795 ◽  
pp. 492-495 ◽  
Author(s):  
Mohd Noor Mazlee ◽  
Alvin Tan Yin Zhen ◽  
Shamsul Baharin Jamaludin ◽  
Nur Farhana Hayazi ◽  
Shaiful Rizam Shamsudin

Tensile shear strength and ageing treatment of dissimilar 6063 aluminum alloy-316L stainless steel joint fabricated by spot welding were investigated. The results showed that tensile shear strength increased with the increasing of welding current. The enhancement of tensile shear strength of the joints was due to the enlargement of the nugget diameter. It was also found that the tensile shear strength values for heat treated joint almost similar to that of non-heat treated joint.


2020 ◽  
Vol 10 (17) ◽  
pp. 5947
Author(s):  
Dong Hyuck Kam ◽  
Taek Eon Jeong ◽  
Jedo Kim

This study investigates the quality of self-piercing riveted joints between vibration-damping aluminum (Al) and other dissimilar materials, namely aluminum alloy (AL5052-H32), steel alloy (GA590DP), and carbon-reinforced plastic (CFRP). The effects of die types (flat, cone, and nipple) on the geometrical characteristics and mechanical performance of the joints are studied using a cross-section examination and tensile shear load testing. The failure modes of each joint are also presented, showing the nature of the forces leading to the joint failures. The results indicate that, for all configurations, adequate joining between vibration-damping Al with AL5052-H32 is expected with a maximum shear load up to 3.28 kN. A shear load up to 3.6 kN was measured for the joints with GA590DP panels with acceptable top and bottom seal characteristics. A vibration-damping Al panel can only be positioned at the bottom when riveting with CFRP due to the brittle nature of CFRP. A tensile shear load up to 2.26 kN was found, which is the lowest amongst the materials tested in this study.


Sign in / Sign up

Export Citation Format

Share Document