scholarly journals Towards Multifunctional Characteristics of Embedded Structures With Carbon Nanotube Yarns

Author(s):  
Corey D. Hernandez ◽  
Thomas S. Gates ◽  
Seun K. Kahng

This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10–20 μm. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.

Author(s):  
Corey D. Hernandez ◽  
Mei Zhang ◽  
Shaoli Fang ◽  
Ray H. Baughman ◽  
Thomas S. Gates ◽  
...  

By forming composite structures with Carbon Nanotube (CNT) yarns we achieve materials capable of measuring strain and composite structures with increased mechanical strength. The CNT yarns used are of the 2-ply and 4-ply variety with the yarns having diameters of about 15–30 μm. The strain sensing characteristics of the yarns are investigated on test beams with the yarns arranged in a bridge configuration. Additionally, the strain sensing properties are also investigated on yarns embedded on the surface of a flexible membrane. Initial mechanical strength tests also show an increase in the modulus of elasticity of the composite materials while incurring a weight penalty of less than one-percent. Also presented are initial temperature characterizations of the yarns.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3954
Author(s):  
Jan Bujnak ◽  
Peter Michalek ◽  
Frantisek Bahleda ◽  
Stefania Grzeszczyk ◽  
Aneta Matuszek-Chmurowska ◽  
...  

Reactive powder concrete (RPC), typically with higher compressive strength, is particularly attractive to structural engineers to apply them in infrastructures for enhancing their resistance under severe environments and loads. The main objective of the initial study presented in the paper was to investigate the behavior of two types of these new cementitious materials differing in the nature of microfibers. The RPC mixes were reinforced with steel and then with basalt microfibers. To evaluate the structural performance of developed unconventional materials, properties were investigated experimentally and compared with the control normal concrete mix. Mechanical tests indicated that dispersing fine fibers for making RPC, a mean compressive strength of 198.3 MPa and flexural strength 52.6 MPa or 23.2 MPa, respectively, were developed after 28 days of standard curing at ambient temperatures. In composite structures consisting of steel girders and a concrete slab, it is necessary to prevent the relative slip at the steel and concrete interface using shear connectors. The very high RPC strength enabled a material saving, weight-reduced application of precast construction, and particularly effective joint to steel beams. The investigation of such shear connection efficiency, in the case of the higher strength concrete deck, using standard push-out test specimens was executed. Finite element numerical models were developed. The outputs of the studies are presented in the paper.


1996 ◽  
Vol 45 (12) ◽  
pp. 1328-1333 ◽  
Author(s):  
Hiromichi HONGO ◽  
Masayoshi YAMAZAKI ◽  
Takashi WATANABE ◽  
Junichi KINUGAWA ◽  
Yoshio MONMA

Sign in / Sign up

Export Citation Format

Share Document