scholarly journals Sustainable Functional Finishing For Cotton Fabrics Using Chestnut Shell Extract

Author(s):  
Kyung Hwa Hong

Abstract Owing to global environmental concerns, sustainable industrial processes have become a topic of significant importance in various fields. Chestnut shells are byproducts of agricultural and food industries; however, they include various health-beneficial compounds such as polyphenols and flavonoids. In this study, the feasibility of using chestnut shell extract as a natural functional agent for textile finishing processes was investigated. The chestnut shell extract was prepared by boiling the inner and outer shells of chestnut in distilled water for 4 h. Subsequently, the extract was filtered, centrifuged, concentrated, and finally dried into powder form using a freeze dryer. The extract was then dissolved in distilled water at different concentrations and applied to cotton fabrics through a pad-dry-cure process. The finished cotton fabrics were investigated by scanning electron microscope, Fourier-transform infrared spectroscopy, etc. In addition, the antibacterial and antioxidant properties of the finished cotton fabrics were examined as functional properties. The results showed that the cotton fabrics finished by chestnut shell extract exhibited significant antibacterial, antioxidant, and deodorant properties when the concentration of the chestnut shell extract was above 10 wt% in the finishing bath.

2020 ◽  
Vol 7 (5) ◽  
pp. 25-31
Author(s):  
Fazlıhan Yılmaz ◽  
Muhammed İBrahim Bahtiyari

Textile finishing processes cover a variety of steps in which various chemicals and methods can be used to functionalize the fabrics. The objective of this study is to investigate the usability of tea and tobacco industrial waste as natural dye sources and antibacterial agents for cotton fabrics. These wastes were collected from the related mills and used directly without previous extraction, as well as in extracted form. Dyeings were conducted at two different temperatures and the dyed samples were analyzed in terms of obtained colors, fastness values, and antibacterial efficiencies. Useful coloration of the cotton fabrics with sufficient fastness values was achieved, with bacterial reductions dependent upon treatment conditions. In general, waste from tea processing yielded better results.


2012 ◽  
Vol 12 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Nazan ERDUMLU ◽  
Bulent OZIPEK ◽  
Goncagul YILMAZ ◽  
Ziynet TOPATAN

Abstract: The use of clean water in textile finishing is both common and very expensive. Effluent water subjected to advanced methods of physical, chemical, and biological treatment could be used for this purpose. However, information obtained from industry and the literature shows that effluent water obtained from different finishing processes may be reused without being totally purified. In this paper, a method is proposed to determine the viability of reusing effluent water obtained from different textile finishing processes of cotton fabrics after just basic treatments. These treatments include; filtering, airing, pH regulating and ion exchange. Effluent water obtained in different textile finishing processes was analysed in terms of pH value, COD (Chemical Oxygen Demand), SS (Suspended Solids), colour, hardness and conductivity. Effluent water for treatment and the process where the treated water was reused were determined by means of the proposed method, based on a multiple criteria decision making approach. A laboratory scale trial was conducted to investigate the efficiency of treatment.


2002 ◽  
Vol 8 (S02) ◽  
pp. 806-807
Author(s):  
W. R. Goynes ◽  
D. V. Parikh ◽  
V. Edwards ◽  
T. Vigo

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mariel Monrroy ◽  
Onix Araúz ◽  
José Renán García

Nephelium lappaceum and its by-products have great potential in the agricultural, pharmaceutical, and food industries. Some studies have shown that N. lappaceum by-products exhibit antimicrobial, antioxidant, antidiabetic, and anticancer properties. However, studies focused on identifying these compounds are rare. The availability of polyphenolic compounds can vary according to environmental conditions, soil, plant variety, and agronomic management. Therefore, in this study, the active compounds in extracts of the N. lappaceum peel were identified, and their antioxidant properties were evaluated using various extraction solvents and both ultrasonic and boiling extraction techniques. The chemical characterization of the N. lappaceum peel exhibited carbohydrate and reducing sugar contents of 12 and 2%, respectively. Phytochemical analysis indicated the presence of flavonoids, tannins, terpenes, and steroids. The total phenolic and flavonoid contents and total antioxidant capacity were the highest in the hydroethanolic extract obtained by ultrasound, with values of 340 mg gallic acid equivalents g−1, 76 mg quercetin equivalents g−1, and 2.9 mmol of Trolox equivalents g−1, respectively. Contrarily, the total anthocyanin content was higher in the acid extract obtained by ultrasound, with a value of 0.7 mg cyanidin-3-O-glucoside equivalents g−1. A total of 18 compounds—including hydroxybenzene, phenolic acid, flavonoids, fatty acids (saturated, unsaturated, and ester), vitamin, arenecarbaldehyde, and phthalate—were identified for the first time in the N. lappaceum peel using gas chromatography-mass spectrometry. The identified compounds have been previously isolated from other plants and reportedly exhibit anticancer, anti-inflammatory, antimicrobial, and antioxidant activities. Thus, the N. lappaceum peel was shown to be a potential source of bioactive compounds of immense importance in the pharmacological and food industries.


2020 ◽  
Vol 122 (10) ◽  
pp. 3029-3038
Author(s):  
Seok Shin Tan ◽  
Seok Tyug Tan ◽  
Chin Xuan Tan

PurposeSalak (Salacca zalacca) is an underutilised fruit. The bioactivities of this fruit have rarely been studied scientifically. Thus, the present study aimed to determine the antioxidant activity of extracts derived from the peel, fruit and kernel of the Salak fruit, as well as the hypoglycemic and anti-hypertensive properties of Salak peel extracts.Design/methodology/approachThe peel, fruit and kernel of the Salak were extracted using distilled water, methanol and ethanol. Antioxidant activities, angiotensin-converting enzyme (ACE) and alpha-amylase inhibition properties of the extracts were estimated via in vitro standard methods. Besides, the total phenolic content (TPC) and total flavonoid content (TFC) of the extracts were also determined in the present study. The antioxidant activities of different parts of Salak extracts were determined by ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) methods. Percent of radical scavenging properties were calculated via DPPH assay. The hypoglycemic and anti-hypertensive properties of Salak peel were evaluated using alpha-amylase inhibition and ACE assays, respectively.FindingsFruit extracts of Salak in methanol were found to exhibit the highest TPC (10.27 ± 0.12 mg GAE/g), TFC (11.04 ± 0.89 mg CE/g) and antioxidant properties amongst all samples whereby the TPC and TFC were strongly correlated with antioxidant activities. On the other hand, distilled water extracted Salak kernel showed to have the lowest TPC (0.53 ± 0.05 mg GAE/g), TFC (0.37 ± 0.01 mg CE/g) and antioxidant properties amongst all the Salak extracts. Peel extracts exhibit comparable antioxidant activities with fruit extracts in the current findings. In addition, peel extracts indicated some extend of ACE and alpha-amylase inhibition activities regardless of the solvents used. Methanol and ethanol peel extracts indicated no significant difference (p < 0.05) ACE (98%) and alpha-amylase (90%) inhibition activities. However, distilled water extracted Salak peel showed significantly lower ACE and alpha-amylase inhibition in comparison to methanol and ethanol peel extracts.Originality/valueThe present findings suggested that the fruit of Salak exhibits the highest antioxidant properties, followed by the peel and lastly, the kernel, which shows the lowest antioxidant properties amongst all the samples. The results also indicated that the peel extracts have ACE and alpha-amylase inhibition activities.


Sign in / Sign up

Export Citation Format

Share Document