scholarly journals Rapid Diagnosis of SARS-CoV-2 Pneumonia on Lower Respiratory Tract Specimens

Author(s):  
Vanessa De Pace ◽  
Patrizia Caligiuri ◽  
Valentina Ricucci ◽  
Nicola Nigro ◽  
Barbara Galano ◽  
...  

Abstract Background: The ongoing pandemic of SARS-CoV-2 requires the availability of accurate and rapid diagnostic tests, especially in some clinical settings like emergency and intensive care units. The objective of this study was to evaluate the diagnostic performances of rapid PCR kit Vivalytic SARS-CoV-2 in lower respiratory tract (LRT) specimens.Methods: A consecutive sample of LRT specimens (bronchoalveolar lavage and bronchoaspirates) was collected from Intensive Care Units of San Martino Hospital (Genoa, Italy) between November 2020 and January 2021. All samples were tested in RT-PCR by using Allplex™ SARS-CoV-2 assay (Seegene Inc., South Korea). Based on RT-PCR results, specimens were categorized into negative, positive with high viral load [cycle threshold (Ct) ≤30] and positive with low viral load (Ct of 31–35). A quota 1:1:1 sampling was used to achieve a sample size of 75. Then, all specimens were tested in the rapid PCR assay Vivalytic SARS-CoV-2 (Bosch Healthcare Solutions GmbH, Germany). The diagnostic performance of the rapid PCR against RT-PCR was assessed through calculation of accuracy, Cohen’s κ, sensitivity, specificity and expected positive (PPV) and negative (NPV) predictive values.Results: The overall diagnostic accuracy of the Vivalytic SARS-CoV-2 was 97.3% (95% CI: 90.9–99.3%) with an excellent Cohen’s κ of 0.94 (95% CI: 0.72–1). The sensitivity and specificity were 96% (95% CI: 86.5–98.9%) and 100% (95% CI: 86.7–100%), respectively. Samples with high viral loads had a sensitivity of 100% (Table 1). The distributions of E gene Ct values were similar (Wilcoxon’s test: P=0.070) with medians of 35 (IQR: 25–36) and 35 (IQR: 25–35), respectively (Figure 1). NPV and PPV was 92.6% and 100%, respectively.Conclusions: This study shows Vivalytic SARS-CoV-2 can be used following the sample liquefaction on LRT specimens. It’s a feasible and highly accurate molecular procedure especially in high viral load samples. This assay allows having a result in about 40 min and therefore may accelerate the clinical decision making in urgent/emergency situations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Vanessa De Pace ◽  
Patrizia Caligiuri ◽  
Valentina Ricucci ◽  
Nicola Nigro ◽  
Barbara Galano ◽  
...  

Abstract Background The ongoing SARS-CoV-2 pandemic requires the availability of accurate and rapid diagnostic tests, especially in such clinical settings as emergency and intensive care units. The objective of this study was to evaluate the diagnostic performance of the Vivalytic SARS-CoV-2 rapid PCR kit in lower respiratory tract (LRT) specimens. Methods Consecutive LRT specimens (bronchoalveolar lavage and bronchoaspirates) were collected from Intensive Care Units of San Martino Hospital (Genoa, Italy) between November 2020 and January 2021. All samples underwent RT-PCR testing by means of the Allplex™ SARS-CoV-2 assay (Seegene Inc., South Korea). On the basis of RT-PCR results, specimens were categorized as negative, positive with high viral load [cycle threshold (Ct) ≤ 30] and positive with low viral load (Ct of 31–35). A 1:1:1 ratio was used to achieve a sample size of 75. All specimens were subsequently tested by means of the Vivalytic SARS-CoV-2 rapid PCR assay (Bosch Healthcare Solutions GmbH, Germany). The diagnostic performance of this assay was assessed against RT-PCR through the calculation of accuracy, Cohen’s κ, sensitivity, specificity and expected positive (PPV) and negative (NPV) predictive values. Results The overall diagnostic accuracy of the Vivalytic SARS-CoV-2 was 97.3% (95% CI: 90.9–99.3%), with an excellent Cohen’s κ of 0.94 (95% CI: 0.72–1). Sensitivity and specificity were 96% (95% CI: 86.5–98.9%) and 100% (95% CI: 86.7–100%), respectively. In samples with high viral loads, sensitivity was 100% (Table 1). The distributions of E gene Ct values were similar (Wilcoxon’s test: p = 0.070), with medians of 35 (IQR: 25–36) and 35 (IQR: 25–35) on Vivalytic and RT-PCR, respectively (Fig. 1). NPV and PPV was 92.6% and 100%, respectively.Table 1 Demographic characteristics and data sample type of the study cases (N = 75) Male, N (%) 56 (74.6%) Age (yr), Median (IQR) 65 (31–81) BAS, N (%) 43 (57.3%)  Negative 30.2%  Positive—High viral load [Ct ≤ 30] 27.9%  Positive—Low viral load [Ct 31–35] 41.9% BAL, N (%) 32 (42.7%)  Negative 37.5%  Positive—High viral load [Ct ≤ 30] 40.6%  Positive—Low viral load [Ct 31–35] 21.9% Data were expressed as proportions for categorical variables. Specimens were categorized into negative, positive with high viral load [cycle threshold (Ct) ≤ 30] and positive with low viral load (Ct of 31–35). BAS bronchoaspirates, BAL bronchoalveolar lavage, Ct cycle threshold Conclusions Vivalytic SARS-CoV-2 can be used effectively on LRT specimens following sample liquefaction. It is a feasible and highly accurate molecular procedure, especially in samples with high viral loads. This assay yields results in about 40 min, and may therefore accelerate clinical decision-making in urgent/emergency situations.



2021 ◽  
Vol 9 (1) ◽  
pp. 185
Author(s):  
Adriana Calderaro ◽  
Mirko Buttrini ◽  
Sara Montecchini ◽  
Giovanna Piccolo ◽  
Monica Martinelli ◽  
...  

The aim of this study was the detection of infectious agents from lower respiratory tract (LRT) samples in order to describe their distribution in patients with severe acute respiratory failure and hospitalized in intensive care units (ICU) in an Italian tertiary-care hospital. LRT samples from 154 patients admitted to ICU from 27 February to 10 May 2020 were prospectively examined for respiratory viruses, including SARS-CoV-2, bacteria and/or fungi. SARS-CoV-2 was revealed in 90 patients (58.4%, 72 males, mean age 65 years). No significant difference was observed between SARS-CoV-2 positives and SARS-CoV-2 negatives with regard to sex, age and bacterial and/or fungal infections. Nonetheless, fungi were more frequently detected among SARS-CoV-2 positives (44/54, 81.4%, p = 0.0053). Candida albicans was the overall most frequently isolated agent, followed by Enterococcus faecalis among SARS-CoV-2 positives and Staphylococcus aureus among SARS-CoV-2 negatives. Overall mortality rate was 40.4%, accounting for 53 deaths: 37 among SARS-CoV-2 positives (mean age 69 years) and 16 among SARS-CoV-2 negatives (mean age 63 years). This study highlights the different patterns of infectious agents between the two patient categories: fungi were prevalently involved among SARS-CoV-2-positive patients and bacteria among the SARS-CoV-2-negative patients. The different therapies and the length of the ICU stay could have influenced these different patterns of infectious agents.



2019 ◽  
Vol 10 (2) ◽  
pp. 14-19 ◽  
Author(s):  
Dharm Raj Bhatta ◽  
Deependra Hamal ◽  
Rajani Shrestha ◽  
Supram HS ◽  
Pushpanjali Joshi ◽  
...  

Background: Lower respiratory tract infections are one of the most common infections among the patients in Intensive Care Units (ICUs). Admission in ICUs and use of life supporting devices increase the risk of infection with multidrug resistant pathogens. Aims and Objectives: This study was aimed to determine the prevalence and antibiograms ofthe bacterial pathogens causing lower respiratory tract infectionsamong patients of ICUs. Materials and Methods: A total of 184 specimens from patients admitted in ICUswith lower respiratory tract infections were included in this study. Isolation, identification and antibiotic susceptibility testing of the isolates was performed by standard microbiological techniques. Carbapenamase detection was performed by modified Hodge test method.Detection of metallo beta lactamase (MBL) was tested by imipenem and imipenem/EDTA disc. Detection of Klebsiellapneumoniaecarbapenamase (KPC) was performed by imipenem and imipenem/phenyl boronic acid. Results: Out of 184 samples, 131 showed significant growth of bacterial pathogens. Acinetobacter species (42.6%), Staphylococcus aureus (16.9%) and Pseudomonasaeruginosa(13.9%)were the three most common isolates. Out of 22 imipenem resistant isolates of Acientobacter species, 9 were KPC producer, 4 were MBL producers and 3 isolates were positive for MBL and KPC both. Among the Acinetobacter species, 5.1% isolates were resistant to tigecycline and colistin. One isolate of Pseudomonas aeruginosa was positive for MBL. Conclusions:High prevalence of multidrug resistant bacteria in ICUs was recorded. Gram negative bacilli were predominantly associated with LRTI among ICU patients;Acinetobacterspecies being most common isolate. Detection of carbapenamase among the Acinetobacterand emergence of tigecycline resistancelimits the therapeutic options.Regular monitoring of such resistant isolates would be important for managing infection control in critical units.



2010 ◽  
Vol 81 (3) ◽  
pp. 235-239 ◽  
Author(s):  
Tessari Andrea ◽  
Squarzon Laura ◽  
Cavallaro Antonietta ◽  
Parisi Saverio Giuseppe ◽  
Cruciani Mario ◽  
...  


2020 ◽  
Author(s):  
Islam Hamed ◽  
Nesreen Shaban ◽  
Marwan Nassar ◽  
Sam Love ◽  
Martin D Curran ◽  
...  

Introduction Samples for diagnostic tests for SARS-CoV-2 can be obtained from the upper (nasopharyngeal/oropharyngeal swabs) or lower respiratory tract (sputum or tracheal aspirate or broncho-alveolar lavage - BAL). Data from different testing sites indicates different rates of positivity. Reverse-transcriptase polymerase chain reaction (RT-PCR) allows for semi-quantitative estimates of viral load as time to crossing threshold (Ct) is inversely related to viral load. Objectives The objective of our study was to evaluate SARS-CoV2 RNA loads between paired nasopharyngeal (NP) and deep lung (endotracheal aspirate or BAL) samples from critically ill patients. Methods SARS-CoV-2 RT-PCR results were retrospectively reviewed for 51 critically ill patients from 5 intensive care units in 3 hospitals ; Addenbrookes Hospital Cambridge (3 units), Royal Papworth Cambridge (1 unit), and Royal Sunderland Hospital (1 unit). At the times when paired NP and deep lung samples were obtained, one patient had been on oxygen only, 6 patients on non-invasive ventilation, 18 patients on ECMO, and 26 patients mechanically ventilated. Results Results collected showed significant gradient between NP and deep lung viral loads. Median Ct value was 29 for NP samples and 24 for deep lung samples. Of 51 paired samples, 16 were negative (below limit of detection) on NP swabs but positive (above limit of detection) on deep lung sample, whilst 2 were negative on deep sample but positive on NP (both patients were on ECMO). Conclusions It has been suggested that whilst SARS-CoV1 tends to replicate in the lower respiratory tract, SARS-CoV2 replicates more vigorously in the upper respiratory tract. These data challenge that assumption. These data suggest that viral migration to, and proliferation in, the lower respiratory tract may be a key factor in the progression to critical illness and the development of severe acute respiratory syndrome (SARS). Factors which promote this migration should be examined for association with severe COVID-19. From a practical point of view, patients with suspected severe COVID-19 should have virological samples obtained from the lower respiratory tract where-ever possible, as upper respiratory samples have a significant negative rate.



2012 ◽  
Vol 186 (9) ◽  
pp. 929-930 ◽  
Author(s):  
Paula López Roa ◽  
Belen Rodríguez-Sánchez ◽  
Pilar Catalán ◽  
Maddalena Giannella ◽  
Luis Alcalá ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document