scholarly journals Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin

2020 ◽  
Author(s):  
Caoxing Huang ◽  
Yayue Zheng ◽  
Wenqian Lin ◽  
Yuxuan Shi ◽  
Guohong Huang ◽  
...  

Abstract Background: The presence of soluble lignin, furfural and hydroxymethylfurfural (HMF) in industrial pre-hydrolysis liquor (PHL) from the pulping process can inhibit its bioconversion into bioethanol and other biochemicals. Although various technologies have been developed to remove these inhibitors, certain amounts of sugars are also inevitably removed during the treatment process. Hence, polystyrene divinylbenzene (PS-DVB) resin was used as an adsorptive material to simultaneously remove fermentation inhibitors while retaining sugars with high yields to improve the fermentability of PHL after acid-hydrolysis by enriching its xylose concentration. The fermentability of acid-hydrolyzed PHL (A-PHL) was evaluated by the bioconversion into ethanol and xylosic acid (XA) after treatment with PS-DVB resin.Results: The results showed that the highest xylose concentration (101.1 g/L) in PHL could be obtained by acid-hydrolysis at 100 oC for 80 min with 4% acid, while the concentration of fermentation inhibitors (furfural, HMF and lignin) in PHL could also be significantly improved during the acid-hydrolysis process. After treatment with PS-DVB resin, not only were 97% of lignin, 92% of furfural, and 97% of HMF removed from A-PHL, but also 96% of xylose was retained for subsequent fermentation. With resin treatment, the fermentability of A-PHL could be improved by 162-282% for ethanol production from A-PHL containing 30-50 g/L xylose and by 18-828% for XA production from A-PHL containing 90-150 g/L xylose. Conclusions: These results confirmed that PS-DVB resin can remove inhibitors from PHL before producing value-added products by bioconversion. In addition, this work will ideally provide a concept for producing value-added chemicals from pre-hydrolysis liquor, which is regarded as the waste stream in the pulping process.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Caoxing Huang ◽  
Yayue Zheng ◽  
Wenqian Lin ◽  
Yuxuan Shi ◽  
Guohong Huang ◽  
...  

Abstract Background The presence of soluble lignin, furfural and hydroxymethylfurfural (HMF) in industrial pre-hydrolysis liquor (PHL) from the pulping process can inhibit its bioconversion into bioethanol and other biochemicals. Although various technologies have been developed to remove these inhibitors, certain amounts of sugars are also inevitably removed during the treatment process. Hence, polystyrene divinylbenzene (PS-DVB) resin was used as an adsorptive material to simultaneously remove fermentation inhibitors while retaining sugars with high yields to improve the fermentability of PHL after acid hydrolysis by enriching its xylose concentration. The fermentability of acid-hydrolyzed PHL (A-PHL) was evaluated by the bioconversion into ethanol and xylosic acid (XA) after treatment with PS-DVB resin. Results The results showed that the highest xylose concentration (101.1 g/L) in PHL could be obtained by acid hydrolysis at 100 °C for 80 min with 4% acid, while the concentration of fermentation inhibitors (furfural, HMF and lignin) in PHL could also be significantly improved during the acid-hydrolysis process. After treatment with PS-DVB resin, not only were 97% of lignin, 92% of furfural, and 97% of HMF removed from A-PHL, but also 96% of xylose was retained for subsequent fermentation. With resin treatment, the fermentability of A-PHL could be improved by 162–282% for ethanol production from A-PHL containing 30–50 g/L xylose and by 18–828% for XA production from A-PHL containing 90–150 g/L xylose. Conclusions These results confirmed that PS-DVB resin can remove inhibitors from PHL before producing value-added products by bioconversion. In addition, this work will ideally provide a concept for producing value-added chemicals from pre-hydrolysis liquor, which is regarded as the waste stream in the pulping process.


2020 ◽  
Author(s):  
Caoxing Huang ◽  
Wenqian Lin ◽  
Yuxuan Shi ◽  
Yayue Zheng ◽  
Qiang Yong

Abstract Background The existences of soluble lignin, furfural and HMF in industrial pre-hydrolysis liquor (PHL) can inhibit its bioconversion into bioethanol and other bio-chemicals. Although various technologies have been carried out to remove these inhibitors, a undesirable sugars removal is also happened during the process. Hence, polystyrene divinylbenzene (PS-DVB) resin was used as adsorptive material to simultaneously remove fermentation inhibitors while retain sugars with higher yield for improving the fermentability of PHL after acid-hydrolysis (A-PHL) treatment. The fermentability of treated PHL was evaluated by the bioconversion into ethanol and xylosic acid (XA). Results Results showed that an highest xylose concentration (101.1 g/L) in PHL could be obtained by acid-hydrolysis at 100 oC for 80 min with 4% acid, while concentration of fermentation inhibitors (furfural, HMF and lignin) could also be significantly improved. After treating, not only 97% of lignin, 92% of furfural, and 97% of HMF were removed from solution, but also 96% of xylose was retained for subsequent fermentation. With resin treatment, the fermentability of A-PHL could be improved by 162–282% for ethanol production from A-PHL with 30–50 g/L xylose and by 18–828% for XA production from A-PHL with 90–150 g/L xylose. Conclusions These results confirmed that PS-DVB resin can remove inhibitors from PHL before producing value-added products by bioconversion. In addition, the work will ideally provide a concept by which pulping facilities could go about producing value-added chemicals from existing waste streams.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Nibedita Sarkar ◽  
Kaustav Aikat

Rice straw is a renewable, cheap, and abundant waste in tropical countries. The pentose content of rice straw can be used as a substrate for many types of value-added products such as xylitol and biofuel. Dilute acid hydrolysis mainly releases pentose from rice straw. The objective of the study was to determine the effect of H2SO4 concentration and reaction time on the xylose production. The variation of the main product xylose with the reaction time was described by a kinetic model and kinetic parameters were calculated to describe the variation of the xylose production with time. The optimum yield (19.35 g/L) was obtained at 0.24 mol/L H2SO4 and 30 minutes.


Author(s):  
A. N. Shakun ◽  
◽  
M. L. Fedorova ◽  
T. V. Karpenko ◽  
E.V. Demidova ◽  
...  

The article discusses the new environmentally friendly catalytic technologies for processing butane cut, developed by SIE Neftehim LLC, giving wide opportunities for involving LPG in production of commercial value-added products. Development of petrochemical industry has created a demand for technologies and catalysts that enhance the economic efficiency of petrochemical products’ manufacturing and expand the feed base of petrochemical facilities without involving primary processing feeds. As the environmentally safe and economically effective solution, SIE Neftehim, LLC offers Isomalk-3 technology to produce maximum amount of isobutane, and Isomalk-3R technology to produce maximum amount of n-butane from isobutane cut. Application of Isomalk-3R technology expands the feed base for ethylene production due to isomerization of isobutane by-product to n-butane. N-butane is a valuable feed for pyrolysis units, providing high yields of ethylene, propylene, and n-butene used for polymer production. In turn, obtaining additional amounts of isobutane is possible due to application of n-butane to isobutane catalytic isomerization technology Isomalk-3. Isobutane cut produced in Isomalk-3 technology is notable for its high purity: the isobutane content may exceed 99 wt.%, it has no sulfur, nitrogen, chlorine, and oxygen impurities. Isobutane is in demand as the feed for production of alkylate, butyl rubber, oxygenates (MTBE and ETBE), isooctane. Isomalk-3 and Isomalk-3R processes do not require injection of chlorinating reagents, and the highly active catalytic system is resistant to poisons and impurities. Isomalk-3 and Isomalk-3R process designs are very similar, which allows integrating two units into one for alternate production of n-butane and isobutane.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Noorhalieza Ali ◽  
Che Afifi Che Aziz ◽  
Onn Hassan

Lignocellulose waste has great potential to be converted into value added products sustainably as it is readily available at low cost. The aim of this study is to examine the amount of glucose produced from coconut pulp and coconut empty fruit bunch using acid hydrolysis. Sodium hydroxide pretreatment is carried out at 70oC using different concentrations of sodium hydroxide which are 5%, 10%, 15% and 20% v/v for a duration time of 2 hours. Optimum pretreatment is evaluated using Fourier Transform Infra-Red (FTIR) analysis. It is observed that optimum pretreatment is at 20% v/v sodium hydroxide. The optimum samples are then hydrolysed using concentrations of 5%, 10%, 15% and 20% v/v of sulphuric acid at different temperatures of 30, 50, 70 and 90oC for 2 hours. Glucose concentration is analysed using an ultraviolet (UV) Spectrophotometer. The highest glucose concentrations obtained are 0.895 g/L and 0.550g/L for coconut pulp and coconut empty fruit bunch, respectively at 20% v/v acid concentration and a temperature of 90oC. 


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Seyed Amirebrahim Emami Moghaddam ◽  
Razif Harun ◽  
Mohd Noriznan Mokhtar ◽  
Rabitah Zakaria

The interest in utilizing algae for wastewater treatment has been increased due to many advantages. Algae-wastewater treatment system offers a cost-efficient and environmentally friendly alternative to conventional treatment processes such as electrocoagulation and flocculation. In this biosystem, algae can assimilate nutrients in the wastewater for their growth and simultaneously capture the carbon dioxide from the atmosphere during photosynthesis resulting in a decrease in the greenhouse gaseousness. Furthermore, the algal biomass obtained from the treatment process could be further converted to produce high value-added products. However, the recovery of free suspended algae from the treated effluent is one of the most important challenges during the treatment process as the current methods such as centrifugation and filtration are faced with the high cost. Immobilization of algae is a suitable approach to overcome the harvesting issue. However, there are some drawbacks with the common immobilization carriers such as alginate and polyacrylamide related to low stability and toxicity, respectively. Hence, it is necessary to apply a new carrier without the mentioned problems. One of the carriers that can be a suitable candidate for the immobilization is zeolite. To date, various types of zeolite have been used for the immobilization of cells of bacteria and yeast. If there is any possibility to apply them for the immobilization of algae, it needs to be considered in further studies. This article reviews cell immobilization technique, biomass immobilization onto zeolites, and algal immobilization with their applications. Furthermore, the potential application of zeolite as an ideal carrier for algal immobilization has been discussed.


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Devi Esteria Hasianna Purba ◽  
Iryanti Eka Suprihatin ◽  
A.A.I.A. Mayun Laksmiwati

Ethanol fermented from potato peels is proposed as one alternative source of renewable energy called bioethanol. In this research bioethanol was produced through four stages namely acid hydrolysis, detoxification, fermentation and distillation. The acid hydrolysis process was carried out using sulphuric acid at 100oC for 60 minutes. The detoxification process was carried out by adding NH4OH into the hydrolyzate prior to fermentation. Distillation was performed up to 100oC and the distillate with the BP of 78-84oC was determined for its ethanol content using gas chromatography. The ethanol produced from 5 grams of dried potato peels through fermentation for 4, 5, 6, and 7 days 3.54%; 4,85%; 5,35%; and 6.15% respectively.


Sign in / Sign up

Export Citation Format

Share Document