scholarly journals Contrasting Effects of Plant-Soil Feedbacks on Growth and Morphology of Two Clonal Plants

Author(s):  
Wei Xue ◽  
Lin Huang ◽  
Wei-Jia Sheng ◽  
Jia-Tao Zhu ◽  
Shu-Qi Li ◽  
...  

Abstract AimSoil abiotic and biotic conditions are often spatially variable, challenging plants with a heterogeneous environment consisting of favorable and unfavorable patches of soil. Many stoloniferous clonal plants can escape from unfavorable patches by elongating stolon internodes, but aggregate in favorable ones through shortening stolon internodes. However, whether these plants can use their stolons to respond to plant-soil feedbacks (PSFs) is largely unknown. MethodsIn the conditioning phase, we grew either Hydrocotyle vulgaris or Glechoma longituba clonal plants separately in mesocosms to condition bulk soil. In the feedback phase, we grew connected mother and daughter ramets of each species in soil inoculated with the unsterilized or sterilized soil conditioned by conspecifics. We grew the plants for 12 weeks and measured the growth of the mother and daughter ramets separately. ResultsThe daughter ramets of H. vulgaris produced more biomass but shorter stolon internodes when grown in soil with sterilized inocula than with unsterilized inocula. However, no difference was found between the daughter ramets of G. longituba grown in soil with unsterilized and sterilized inocula. For both species, no significant difference was found between the mother ramet or between the daughter ramets when the mother ramet was grown in soil with sterilized and unsterilized inocula. ConclusionsThe daughter ramets rather than the mother ramet of H. vulgaris experienced negative biotic PSFs. However, PSF had no effects on the daughter or mother ramet of G. longituba. Moreover, physiological integration or plasticity in stolon internode lengths cannot help H. vulgaris alleviate the negative PSFs.

2021 ◽  
Author(s):  
Xuemei Wang ◽  
Bangguo Yan ◽  
Liangtao Shi ◽  
Gangcai Liu

Abstract Biotic plant-soil feedback has been widely studied, and may be particularly important in resource-poor areas. However, the roles of soil nutrient cycling in affecting plant growth in this process still remained unclear. The aim of this study was to explore the roles of soil biota in regulating nutrient cycling by conducting a two-phase feedback experiment in a dry-hot valley, with a conditioning phase during which there were Dodonaea viscosa or no D. viscosa growing in the soil, and a feedback phase in which the effect of the conditioned soil biota on D. viscosa performance was measured. The growth of D. viscosa significantly reduced soil N after the conditioning phase. However, D. viscosa showed a positive plant-soil feedback. In the feedback phase, the D. viscosa conditioned soil promoted the stem diameter, leaf area, and leaf dry mass content of D. viscosa. Total biomass was also significantly higher in D. viscosa conditioned soil than that in not conditioned soil. In contrast, soil sterilization had a negative effect on the growth of D. viscosa, with a significant reduction in plant biomass, especially in D. viscosa conditioned soil, and soil sterilization significantly increased the root: shoot biomass ratio and litter mass. Furthermore, we showed that although the biota-driven changes in enzyme activities correlated with the leaf N and P amount especially P amount, the enzyme activity was not the main reason to promote D. viscosa growth in the conditioned soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Quan ◽  
Vít Latzel ◽  
Dan Tie ◽  
Yuhan Zhang ◽  
Zuzana Münzbergová ◽  
...  

Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants’ foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of “escape strategy.” Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.


2021 ◽  
Vol 52 (2) ◽  
pp. 239-250
Author(s):  
X.J. He ◽  
W.W. Zhu ◽  
F.Z. Wu

We studied the effects of 7-crop rotations and continuous - monocropping systems on soil microorganism and its feedback. The results showed that absolute abundance of soil bacteria (Pseudomonas and Bacillus) in tomato - celery - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than control (CK). Absolute abundance of soil fungi in tomato - celery - cucumber - cabbage, kidney bean - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than CK. Dry weight of cucumber seedlings was significantly positively correlated with bacterial (Pseudomonas and Bacillus) abundance, and negatively correlated with fungal count. The results of inoculation with Fusarium oxysporum f.sp. cucumerinum showed that plant dry weight of cucumber seedlings in tomato - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage, cucumber - tomato - cucumber - cabbage rotation soil was significantly higher than other treatments, and their disease index was significantly lower than other treatments. There was no significant difference in dry weight of cucumber seedlings in rotation and CK in the soil sterilization test. The results of plant - soil feedback experiment showed that soil microbial changes caused by different rotation patterns had a positive feedback effect on growth of cucumber seedlings.


2012 ◽  
Vol 58 (No. 6) ◽  
pp. 249-255 ◽  
Author(s):  
D.R. Chaudhary ◽  
J. Saxena ◽  
N. Lorenz ◽  
R.P. Dick

The use of switchgrass (Panicum virgatum L.) as an energy crop has gained great importance in past two decades due to its high biomass yields on marginal lands with low agricultural inputs and low maintenance requirements. Information on the allocation of photosynthetically fixed C in the switchgrass-soil system is important to understand the C flow and to quantify the sequestration of C in soils. The allocation of <sup>13</sup>C labeled photosynthates in shoot, root, soil, and in microbial biomass carbon (MBC) of rhizosphere and bulk soil of 45 days old, greenhouse grown-switchgrass was examined during 20 days <sup>13</sup>C-CO<sub>2</sub> pulse labeling period. The total <sup>13</sup>C recovered in the plant-soil system varied from 79% after 1 day to 42% after 20 days of labeling. After labeling, 54%, 40%, and 6% excess <sup>13</sup>C resided in shoot, root and soil, respectively on day 1; 27%, 61% and 11%, respectively on day 5 and 20%, 63% and 17%, respectively day 20 after labeling. The maximum incorporation of <sup>13</sup>C from roots into the MB of rhizosphere soil occurred within the first 24 h of labeling. The excess <sup>13</sup>C values of rhizosphere soil and rhizosphere MBC were significantly higher than excess <sup>13</sup>C values of bulk soil and the bulk soil MBC, respectively. The proportion of excess <sup>13</sup>C in soil as MBC declined from 92 to 15% in rhizosphere soil and from 79 to 18% in bulk soil, for 1 day and 20 days after labeling, respectively. The present study showed the effectiveness of <sup>13</sup>C labeling to examine the fate of recently photosynthesized C in soil-plant (switchgrass) system and dynamics of MBC. &nbsp;


Author(s):  
Tayebe Ziaei ◽  
Maryam Ghanbari Gorji ◽  
Naser Behnampour ◽  
Masumeh Rezaei Aval

AbstractBackgroundSex dialogue is one of the most critical and challenging topics between mothers and adolescents. The knowledge and skills of mothers in sex dialogue with their daughters are essential. The purpose of this study is to determine the effect of group counseling based on communication skills on mothers through their sex dialogue with their daughters.MethodsA randomized controlled field trial was conducted on 168 couples of mothers and their daughters selected by the stratified matching method and randomly divided into two control and intervention groups. The mothers in the intervention group participated in a communication-based consultation in groups consisting of 6–12 people for 6–7 weekly sessions, each one lasting 60 min. The data collection tool was a Persian-translated questionnaire by Jaccard for sex dialogue between mother and daughter. The data were analyzed using Chi-square (χ2), ANOVA with repeated measures and modified post hoc Bonferroni tests.ResultsThere was a significant difference in the mean score of mother-daughter sex dialogue 1 week after intervention between the intervention (34.48 ± 8.74) and control (40.44 ± 9.49) groups (p = 0.001) and 1 month after the intervention between the intervention (30.41 ± 10.07) and control (42.47 ± 9.62) groups (p < 0.001).ConclusionThrough applying communication skills, an increase in mother-daughter sex dialogue frequency was observed after group counseling. Therefore, it is suggested to promote mother-daughter communication skills by accessing the mothers via schools, health centers and with the aid of midwifery counselors, midwives and other trained caretakers.


2012 ◽  
Vol 313 ◽  
pp. 153-161 ◽  
Author(s):  
Fabrizio Cartenì ◽  
Addolorata Marasco ◽  
Giuliano Bonanomi ◽  
Stefano Mazzoleni ◽  
Max Rietkerk ◽  
...  

Author(s):  
Jushan Liu ◽  
Chen Chen ◽  
Yao Pan ◽  
Yang Zhang ◽  
Ying Gao

Clonal plants in grasslands are special species with physiological integration which can enhance their ability to tolerate herbivory stress especially in heterogeneous environments. However, little is known about how grazing intensity affects the trade-off between the benefits and costs of physiological integration, and the mechanism by which physiological integration improves compensatory growth in response to herbivory stress. We examined the effects of simulated grazing intensity on compensatory growth and physiological integration in a clonal species Leymus chinensis with a greenhouse experiment. This experiment was conducted in a factorial design involving nutrient heterogeneity (high-high, high-low, low-high, low-low), simulated grazing by clipping (0%, 25%, 50% or 75% shoot removal) and rhizome connection (intact versus severed) treatments. Compensatory indexes at 25% and 50% clipping levels were higher than that at 75% clipping level except in low-low nutrient treatments. Physiological integration decreased and increased compensatory indexes when the target-ramets worked as exporter and importer, respectively. Generally, clipping increased both benefits and costs of physiological integration, but its net benefits (benefits minus costs) changed with clipping intensity. Physiological integration optimized compensatory growth at light and moderate clipping intensity, and its net benefits determined the high capacity of compensatory growth. Grassland managements such as grazing or mowing at light and moderate intensity would maximize the profit of physiological integration and improve grassland sustainability.


2021 ◽  
Author(s):  
Wanlu Zhai ◽  
Yi Wang ◽  
Junwei Luan ◽  
Shirong Liu

Abstract Aims Resource sharing among connected ramets (i.e., clonal integration) is one of the distinct traits of clonal plants. Clonal integration confers Moso bamboo (Phyllostachys pubescens) a strong adaptability to different environmental conditions. But the mechanisms of how clonal integration makes Moso bamboo has better performance are still poorly understood. In this study, acropetal and basipetal translocation of photosynthates between Moso bamboo ramets were analyzed separately, to investigate how clonal fragments obtain higher benefits under heterogeneous N conditions. Methods Clonal fragments of Moso bamboo consisting of two interconnected mother-daughter ramets were used, each of the ramets was subjected to either with or without N addition. The acropetal and basipetal translocation of 13C-photosynthates were separated via single-ramet 13CO2-labeling. Important Findings Mother ramets translocated more 13C-photosynthates to daughter ramets with N addition, and the translocation of 13C-photosynthates to mother ramets was more pronounced when daughter ramets were treated with N addition. The 13C-photosynthates that were translocated from mother ramets without and with N addition were mainly invested in the leaves and roots of daughter ramets with N addition, from daughter ramets with N addition were mainly invested in the leaves and roots of mother ramets with and without N addition, respectively. These results suggest that mother ramets preferentially invest more resources in nutrient-rich daughter ramets, and that daughter ramets serve as efficient resource acquisition sites to specialize in acquiring abundant resources based on the resource conditions of mother ramets. Clonal plants can improve their resource acquisition efficiency and maximize the overall performance through this way.


2019 ◽  
Vol 12 (6) ◽  
pp. 972-981 ◽  
Author(s):  
Sergio R Roiloa ◽  
Peter Alpert ◽  
Rodolfo Barreiro

Abstract Aims Clonal growth is associated with invasiveness in introduced plant species, but few studies have compared invasive and noninvasive introduced clonal species to investigate which clonal traits may underlie invasiveness. To test the hypothesis that greater capacity to increase clonal growth via physiological integration of connected ramets increases invasiveness in clonal plants, we compared the effects of severing connections on accumulation of mass in the two species of the creeping, succulent, perennial, herbaceous genus Carpobrotus that have been introduced on sand dunes along the Pacific Coast of northern California, the highly invasive species Carpobrotus edulis and the co-occurring, noninvasive species Carpobrotus chilensis. Methods Pairs of ramets from four mixed populations of the species from California were grown in a common garden for 3 months with and without severing the stem connecting the ramets. To simulate the effect of clones on soils in natural populations, the older ramet was grown in sand amended with potting compost and the younger in sand alone. Important Findings Severance decreased net growth in mass by ~60% in C. edulis and ~100% in C. chilensis, due mainly to the negative effect of severance on the shoot mass of the younger ramet within a pair. Contrary to the hypothesis, this suggests that physiological integration increases growth more in the less invasive species. However, severance also decreased allocation of mass to roots in the older ramet and increased it in the younger ramet in a pair, and the effect on the younger ramet was about twice as great in C. edulis as in C. chilensis. This indicates that the more invasive species shows greater phenotypic plasticity in response to physiological integration, in particular greater capacity for division of labor. This could contribute to greater long-term growth and suggests that the division of labor may be a trait that underlies the association between clonal growth and invasiveness in plants.


Sign in / Sign up

Export Citation Format

Share Document