scholarly journals Environmental Behaviors of (E)-Pyriminobac-methyl in Agricultural Soils

Author(s):  
Wenwen Zhou ◽  
Haoran Jia ◽  
Lang Liu ◽  
Baotong Li ◽  
Yuqi Li ◽  
...  

Abstract (E)-Pyriminobac-methyl (EPM), a pyrimidine benzoic acid esters herbicide, has a high potential as weedicide; nevertheless, its environmental behaviors are still not well understood. In this study, we systematically investigated for the first time the adsorption–desorption, degradation, and leaching behaviors of EPM in agricultural soils from five exemplar sites in China (characterized by different physicochemical properties) through laboratory simulation experiments. The EPM adsorption–desorption results were well fitted by the Freundlich model (R2 > 0.9999). In the analyzed soils, the Freundlich adsorption (i.e., Kf-ads) and desorption (i.e., Kf-des) coefficients of EPM varied between 0.85–32.22 mg1−1/n L1/n kg−1 and between 0.78–5.02 mg1−1/n L1/n kg−1, respectively. Moreover, the degradation of EPM reflected first-order kinetics: its half-life ranged between 37.46–66.00 d depending on the environmental conditions, and abiotic degradation was predominant in the degradation of this compound. The mobility of EPM in the five soils varied from immobile to highly mobile. The groundwater ubiquity score ranged between 0.9765–2.7160, indicating that EPM posed threat to groundwater quality. Overall, the results of this study demonstrate the easy degradability of EPM, as well as its high adsorption affinity and low mobility in soils with abundant organic matter content and high cation exchange capacity. Under such conditions, there is a relatively low contamination risk for groundwater systems in relation to this compound. Overall, our findings provide a solid basis for predicting the environmental impacts of EPM.

2021 ◽  
Author(s):  
Wenwen Zhou ◽  
Haoran Jia ◽  
Lang Liu ◽  
Baotong Li ◽  
Yuqi Li ◽  
...  

Abstract. (E)-Pyriminobac-methyl (EPM), a pyrimidine benzoic acid esters herbicide, has a high potential as weedicide; nevertheless, its environmental behaviors are still not well understood. In this study, we systematically investigated for the first time the adsorption–desorption, degradation, and leaching behaviors of EPM in agricultural soils from five exemplar sites in China (characterized by different physicochemical properties) through laboratory simulation experiments. The EPM adsorption–desorption results were well fitted by the Freundlich model (R2 > 0.9999). In the analyzed soils, the Freundlich adsorption (i.e., Kf-ads) and desorption (i.e., Kf-des) coefficients of EPM varied between 0.85–32.22 mg1−1/n L1/n kg−1 and between 0.78–5.02 mg1−1/n L1/n kg−1, respectively. Moreover, the degradation of EPM reflected first-order kinetics: its half-life ranged between 37.46–66.00 d depending on the environmental conditions, and abiotic degradation was predominant in the degradation of this compound. The mobility of EPM in the five soils varied from immobile to highly mobile. The groundwater ubiquity score ranged between 0.9765–2.7160, indicating that EPM posed threat to groundwater quality. Overall, the results of this study demonstrate the easy degradability of EPM, as well as its high adsorption affinity and low mobility in soils with abundant organic matter content and high cation exchange capacity. Under such conditions, there is a relatively low contamination risk for groundwater systems in relation to this compound. At the same time, due to its slow degradation, EPM has a low adsorption affinity and tends to be highly mobile in soils poor in organic matter content and with low cation exchange capacity. Under such conditions, there is a relatively high contamination risk for groundwater systems in relation to this compound. Overall, our findings provide a solid basis for predicting the environmental impacts of EPM.


2021 ◽  
Author(s):  
Umrbek Sharipov ◽  
Martin Kočárek ◽  
Miroslav Jursík ◽  
Antonín Nikodem ◽  
Luboš Borůvka

Abstract This study focuses on the assessment of herbicide adsorption and degradation in three soils (Haplic Chernozem, Haplic Fluvisol, and Arenic Regozem) from different agricultural regions of the Czech Republic where sunflower is cultivated. Soil samples were used in laboratory batch sorption and degradation experiments for six herbicides commonly used on sunflower crops. The findings are used to examine the effect of soil and herbicide properties on adsorption and degradation, as well as to determine the possible relation between the two processes. The (Kf) sorption coefficient ranged from 1.07 to 135.37 cm3/n μg1-1/n g-1, and sorption increased in order: dimethenamid-p < pethoxamid < s-metolachlor < flurochloridone < aclonifen < pendimethalin. Sorption of all six herbicides was positively correlated with organic matter content (p < 0. 001), and cation exchange capacity (p < 0.001). pH was negatively correlated with the sorption of all six compounds (p < 0.001). Degradation rates of herbicides ranged from 0. 012 to 0. 048 day-1, which corresponding to (DT50) half-lives between 14 - 57 days respectively. The longer half-lives were always found in Haplic Fluvisol with higher organic matter content. Results showed that both adsorption and degradation of herbicides is mainly controlled by soil organic matter. A negative relationship was found between the sorption coefficient and the rate of degradation. It can be concluded that the Freundlich sorption coefficient (Kf) can be a good predictor for soil degradation of the studied herbicides.


2021 ◽  
Vol 11 (10) ◽  
pp. 4663
Author(s):  
Raquel Cela-Dablanca ◽  
Carolina Nebot ◽  
Lucia Rodríguez López ◽  
David Ferández-Calviño ◽  
Manuel Arias-Estévez ◽  
...  

Antibiotics in wastewater, sewage sludge, manures, and slurries constitute a risk for the environment when spread on soils. This work studies the adsorption and desorption of the antibiotic cefuroxime (CFX) in 23 agricultural and forest soils, using batch-type experiments. Our results show that the adsorption values were between 40.75 and 99.57% in the agricultural soils, while the range was lower (from 74.57 to 93.46%) in forest soils. Among the Freundlich, Langmuir, and Linear models, the Freundlich equation shows the best fit for the adsorption results. In addition, agricultural soils with higher pH are the ones that present the highest adsorption. Further confirmation of the influence of pH on adsorption is given by the fact that Freundlich’s KF parameter and the Linear model Kd parameter shows a positive correlation with pH and with the exchangeable Ca and Mg values, which are known to affect the charges of the soil colloids and the formation of cationic bridges between adsorbents and adsorbate. In addition, Freundlich’s n parameter shows a positive and significant correlation with the organic matter content, related to the high adsorption taking place on forest soils despite their pH < 5. Regarding desorption, in most cases, it is lower than 1%, which indicates that CFX is adsorbed in a rather irreversible way onto these soils. Overall, these results can be considered relevant regarding their potential impact on environmental quality and public health.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 32
Author(s):  
María J. Carpio ◽  
María J. Sánchez-Martín ◽  
M. Sonia Rodríguez-Cruz ◽  
Jesús M. Marín-Benito

The management of large volumes of organic residues generated in different livestock, urban, agricultural and industrial activities is a topic of environmental and social interest. The high organic matter content of these residues means that their application as soil organic amendments in agriculture is considered one of the more sustainable options, as it could solve the problem of the accumulation of uncontrolled wastes while improving soil quality and avoiding its irreversible degradation. However, the behavior of pesticides applied to increase crop yields could be modified in the presence of these amendments in the soil. This review article addresses how the adsorption–desorption, dissipation and leaching of pesticides in soils is affected by different organic residues usually applied as organic amendments. Based on the results reported from laboratory studies, the influence on these processes has been evaluated of multiple factors related to organic residues (e.g., origin, nature, composition, rates, and incubation time of the amended soils), pesticides (e.g., with different use, structure, characteristics, and application method), and soils with different physicochemical properties. Future perspectives on this topic are also included for highlighting the need to extend these laboratory studies to field and modelling scale to better assess and predict pesticide fate in amended soil scenarios.


2021 ◽  
Vol 1 (42) ◽  
pp. 109-115
Author(s):  
Binh Phan Khanh Huynh ◽  
Tho Van Nguyen ◽  
Vien My Tran

This study aimed to use charcoal derived from the bamboo and melaleuca produced by traditional kiln applied to sandy soil growing mustard green (Brassica juncea L.). The charcoals were applied at three ratio (1%,2%, and 3%, which correspond to 10, 20, and 30 g charcoal/kg soil in pots) and the control treatment without charcoal. Soil properties were investigated including bulk density, pH, electrical conductivity (EC), cation exchange capacity (CEC), organic matter content, total nitrogen, and total phosphorous. The results showed that bulk density decreased in charcoal-treated soils. pH and EC were in the suitable range for plants.Nutrients and CEC of the soil in the charcoal treatment were significantly higher compared with the control (CEC increase 6.8% to 16%; TC increase 80% to 115%; TN increase 37.5 to 75%). Green mustard growing on charcoalamended soil had greater height (higher 3% to 21%), bigger leaves, and higher yield (increase18% to 81%) than those of plants groomed in the control treatment. This study showed the potential of using charcoal as supplying nutrient to the poor soil. Moreover, the abundant of raw material and easy to produce, it is suitable for applying in the Mekong Delta, Viet Nam, and other countries with similar conditions and infrastructure. 


2016 ◽  
Vol 2 (2) ◽  
pp. 37
Author(s):  
B.H. Prasetyo ◽  
N. Suharta ◽  
Subagyo H. ◽  
Hikmatullah Hikmatullah

Ultisols are a major group of marginal soils extensively found in the upland area of Indonesia. To better understand the potential of the Ultisols developed from claystone and sandstone in the Sasamba Integrated Economical Development Area in East Kalimantan, chemical and mineralogical characteristics of 27 Ultisols pedons consisting of 76 topsoil and 118 subsoil samples were investigated. Besides analysis and interpretation of data, relationships of several soil characteristics were constructed using simple regression. The results indicated that Ultisols showed acid to very acid reaction, had low content of organic matter and low base saturation. Soils generally exhibited net negative charge, and the point of zero charge was reached at pH 3.6. Both potential and available phosphates were low, and there was a trend that amorphous aluminum was responsible for phosphate fixation. The low content of exchangeable potassium in topsoil and subsoil indicated a positive correlation with potential potassium. Clay mineral was composed chiefly of kaolinite, with small amounts of illite, vermiculite, and quartz. The domination of kaolinite and low organic matter content causes the soils to have low cation exchange capacity. Soil management in this area should be focused on building up and maintaining soil fertility, and applying appropriate soil conservation techniques to minimize erosion. To obtain sustained productivity, various soil amendments including the use of farm and/or green manure, liming with agricultural lime, and application of rock phosphate and K fertilizers were highly recommended.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


2018 ◽  
Vol 42 (4) ◽  
pp. 420-430
Author(s):  
Judith Prieto Méndez ◽  
Francisco Prieto García ◽  
Nallely Trejo González ◽  
Yolanda Marmolejo Santillán ◽  
Otilio Arturo Acevedo Sandoval

ABSTRACT The accumulation of salts in the soil profile produces conditions that affect the growth of crops. The effects of these conditions on crops and the intensity of these effects depend on the quantity and type of salts that predominate and are also influenced by soil characteristics and climate, among other aspects. The salinization of agricultural soils is a serious problem facing agriculture today. The use of organic amendments has increased in recent years, acting on the texture of the soil, correcting compaction or granularity problems, and influencing chemical and/or biological reactions. The objectives of this work were to analyze the use of compost and vermicompost using different analysis techniques to determine the influence of conditions on the remediation of a saline soil. In saturation extracts of soil, compost, and vermicompost, a Zeta potential value 2.34-2.44 times more negative (more-stable colloids) than that in the soil colloids was observed in the amendments. The values of electrophoretic mobility were more negative in the organic amendments compared with the soil. This is the first time that these parameters have been reported for these purposes and for a saline soil. In this study, the soil has low organic matter content (1.65%), so these amendments are expected to improve soil quality and texture, achieving the recovery of saline soils.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 7 ◽  
Author(s):  
Thomas Keller ◽  
Anthony R. Dexter

The plastic limits (lower plastic limit, PL; and liquid limit, LL) are important soil properties that can yield information on soil mechanical behaviour. The objective of this paper is to study the plastic limits of agricultural soils as functions of soil texture and organic matter (OM) content. The plastic limits were highly related to the clay content. The LL was more strongly correlated with clay than was PL, but the reasons are unclear. Interestingly, PL was virtually unaffected by clay content for soils with clay contents below ~35%. The OM had a strong effect on the plastic limits. This effect was clearly demonstrated when analysing soils of similar texture with a range of OM. We present equations (pedotransfer functions) for estimation of PL, LL, and plasticity index (PI) from soil texture and OM. Finally, we predict that the clay content must be ≥10% for soils without OM to be plastic; however, soils with <10% clay can be plastic if OM is present. More research is needed to investigate OM effects on soil consistency.


Sign in / Sign up

Export Citation Format

Share Document