scholarly journals Development and Evaluation of Europium-Based Quantitative Lateral Flow Immunoassay for the Chronic Kidney Disease Marker Cystatin-C

Author(s):  
SATHEESH NATARAJAN ◽  
Ebru saatci

Abstract This study aimed to establish a Europium label time-resolved fluorescence immunoassay (TRFIA) to detect the chronic kidney disease (CKD) biomarker Cystatin-C. Some Cystatin-c immunoassays are sensitive, accurate, and available for clinical application, but they are expensive and time-consuming procedures. Also, conventional organic dye-based fluorescence lateral flow assay showed more background fluorescence interference and low analytical sensitivity. So this Europium-based sandwich immunoassay was developed to detect the concentration of cystatin-c in a urine sample with captured anti-cystatin-c antibodies immobilized on nitrocellulose membrane and then bonded with detection anti-cystatin-c labelled with CM-EU, followed by fluorescence measurement using time-resolved fluorometry in 15 minutes. The performance of this TRFIA was evaluated using the clinical urine serum and compared with the ELISA assays. The linear calibration range was 0.015-32 µg/ml, and the limit of detection (LOD) quantified was 0.0001µg/ml. This current work has improved the LOD of our previous work from 0.013µg/ml to 0.001µg/ml. These results indicated that the CM-EU nanoparticle-based LFIA is rapid, more sensitive, reliable, and reproducible for point-of-care testing of Cys-C concentrations in urine

2021 ◽  
Vol 7 ◽  
Author(s):  
Lin Lin ◽  
Jinshuai Guo ◽  
Haiyang Liu ◽  
Xiaofeng Jiang

A rapid, highly sensitive, and robust diagnostic technique for point-of-care (PoC) testing can be developed using the combination of the nanoparticle-based lateral flow biosensors (LFB) and isothermal nucleic acid amplification technology. Here, we developed a polymerase spiral reaction (PSR) containing FITC-labeled DNA probes coupled with the nanoparticle-based LFB assay (PSR-LFB) to detect the amplified products to detect HBV visually. Under the optimized conditions, the PSR assay involved incubation of the reaction mixture for 20 min at 63°C, followed by visual detection of positive amplicons using LFB, which would generate a red test line based on the biotin/streptavidin interaction and immunoreactions, within 5 min. A cross-reactivity test revealed that the developed PSR-LFB assay showed good specificity for HBV and could distinguish HBV from other pathogenic microorganisms. For the analytical sensitivity, the limit of detection (LoD) of PSR-LFB assay was recorded as 5.4 copies/mL of HBV genomic DNA, which was ten-times more sensitive than qPCR and loop-mediated isothermal amplification (LAMP). Additionally, all the HBV-positive (29/82) samples, identified using ELISA, were also successfully detected by the PSR-LFB assay. We found that the true positive rate of the PSR-LFB assay was higher than that of qPCR (100 vs. 89.66%, respectively), as well as the LAMP assay (100 vs. 96.55%, respectively). Furthermore, the integrated procedure could be completed in 60 min, including the processing of the blood samples (30 min), an isothermal reaction (20 min), and result visualization (5 min). Thus, this PSR-LFB assay could be a potentially useful technique for PoC diagnosis of HBV in resource-limited countries.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258819
Author(s):  
Benjamin D. Grant ◽  
Caitlin E. Anderson ◽  
Luis F. Alonzo ◽  
Spencer H. Garing ◽  
John R. Williford ◽  
...  

Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.


2013 ◽  
Vol 59 (4) ◽  
pp. 641-648 ◽  
Author(s):  
Christina Swanson ◽  
Annalisa D'Andrea

BACKGROUND Lateral flow assays (LFAs) are popular point-of-care diagnostic tools because they are rapid and easy to use. Nevertheless, they often lack analytical sensitivity and quantitative output and may be difficult to multiplex, limiting their usefulness in biomarker measurement. As a proof-of-concept study, we detail the design of a quantitative, multiplex LFA with readily available near-infrared (NIR) detection to improve analytical sensitivity. METHODS NIR dye was conjugated to selected antibodies and incorporated into LFAs. We used singleplex, optimized NIR-LFAs to measure interleukin (IL)-6 from 0 to 200 pg/mL and developed duplex assays to simultaneously measure IL-6 from 0 to 100 pg/mL (0 to 4.5 pmol/L) and C-reactive protein (CRP) from 50 to 2500 ng/mL (0.4 to 20 nmol/L) on a single test strip. Assays were tested on 60 different spiked samples and compared to ELISA results. RESULTS NIR-LFAs detected IL-6 in a 10% plasma matrix with a limit of detection of 4 pg/mL (182 fmol/L) and a CV <7%. Duplex NIR-LFAs quantitatively measured IL-6 and CRP concentrations simultaneously. Values strongly correlated to ELISA measurements, with R2 values of 0.9825 and 0.9711 for IL-6 and CRP, respectively. CONCLUSIONS NIR-LFAs exhibit quantitative measurement at pg/mL concentrations owing to a high signal-to-BACKGROUND ratio and robust detection antibody clearance through the test strip. Moreover, NIR-LFAs are able to detect molecules present at vastly different concentrations in multiplex format and compare favorably to ELISAs. LFAs with direct NIR detection may be a valuable tool for biomarker evaluation in the point-of-care setting.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S57-S57
Author(s):  
Edgar Ong ◽  
Ruo Huang ◽  
Richard Kirkland ◽  
Michael Hale ◽  
Larry Mimms

Abstract Introduction A fast (<5 min), time-resolved fluorescence resonance energy transfer (FRET)-based immunoassay was developed for the quantitative detection of infliximab (IFX) and biosimilars for use in therapeutic drug monitoring using only 20 µL of fingerstick whole blood or serum at the point-of-care. The Procise IFX assay and ProciseDx analyzer are CE-marked. Studies were performed to characterize analytical performance of the Procise IFX assay on the ProciseDx analyzer. Methods Analytical testing was performed by spiking known amounts of IFX into negative serum and whole blood specimens. Analytical sensitivity was determined using limiting concentrations of IFX. Linearity was determined by testing IFX across the assay range. Hook effect was assessed at IFX concentrations beyond levels expected to be found within a patient. Testing of assay precision, cross-reactivity and potential interfering substances, and biosimilars was performed. The Procise IFX assay was also compared head-to-head with another CE-marked assay: LISA-TRACKER infliximab ELISA test (Theradiag, France). The accuracy of the Procise IFX assay is established through calibrators and controls traceable to the WHO 1st International Standard for Infliximab (NIBSC code: 16/170). Results The Procise IFX assay shows a Limit of Blank, Limit of Detection, and Lower Limit of Quantitation (LLoQ) of 0.1, 0.2, and 1.1 µg/mL in serum and 0.6, 1.1, and 1.7 µg/mL in whole blood, respectively. The linear assay range was determined to be 1.7 to 77.2 µg/mL in serum and whole blood. No hook effect was observed at an IFX concentration of 200 µg/mL as the value reported as “>ULoQ”. Assay precision testing across 20 days with multiple runs and reagent lots showed an intra-assay coefficient of variation (CV) of 2.7%, an inter-assay CV of <2%, and a total CV of 3.4%. The presence of potentially interfering/cross-reacting substances showed minimal impact on assay specificity with %bias within ±8% of control. Testing of biosimilars (infliximab-dyyb and infliximab-abda) showed good recovery. A good correlation to the Theradiag infliximab ELISA was obtained for both serum (slope=1.01; r=0.99) and whole blood (slope=1.01; r=0.98) samples (Figure 1). Conclusion Results indicate that the Procise IFX assay is sensitive, specific, and precise yielding results within 5 minutes from both whole blood and serum without the operator needing to specify sample type. Additionally, it shows very good correlation to a comparator assay that takes several hours and sample manipulation to yield results. This makes the Procise IFX assay ideal for obtaining fast and accurate IFX quantitation, thus allowing for immediate drug level dosing decisions to be made by the physician during patient treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Gaikwad ◽  
P. R. Thangaraj ◽  
A. K. Sen

AbstractThe levels of hydrogen peroxide ($${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 ) in human blood is of great relevance as it has emerged as an important signalling molecule in a variety of disease states. Fast and reliable measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the blood, however, continues to remain a challenge. Herein we report an automated method employing a microfluidic device for direct and rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in human blood based on laser-induced fluorescence measurement. Our study delineates the critical factors that affect measurement accuracy—we found blood cells and soluble proteins significantly alter the native $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the time interval between sample withdrawal and detection. We show that separation of blood cells and subsequent dilution of the plasma with a buffer at a ratio of 1:6 inhibits the above effect, leading to reliable measurements. We demonstrate rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in plasma in the concentration range of 0–49 µM, offering a limit of detection of 0.05 µM, a sensitivity of 0.60 µM−1, and detection time of 15 min; the device is amenable to the real-time measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in the patient’s blood. Using the linear correlation obtained with known quantities of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 , the endogenous $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 concentration in the blood of healthy individuals is found to be in the range of 0.8–6 µM. The availability of this device at the point of care will have relevance in understanding the role of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in health and disease.


2009 ◽  
Vol 112 (3) ◽  
pp. c164-c170 ◽  
Author(s):  
Néstor Fontseré ◽  
Vicens Esteve ◽  
Ana Saurina ◽  
Mónica Pou ◽  
Nuria Barba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document