scholarly journals Emergency Available Drugs in Markets to Treat COVID-19

Author(s):  
Amir Hassan ◽  
Abrar Hussain

Abstract Our current study is focused on emergency available drug in market to treat COVID-19 a viral infection that produces pneumonia and respiratory disorder. By pharmacology knowledge base treating viral-respiratory infection and immune inflammation, which posses’ direct effect against corona virus (COVID-19) the different antibiotics were evaluated from market on COVID-19 symptoms which includes Provas 100ml, Injections: Azithma 500mg, Oxidil 1gm, Gen-M 180mg and Bejectal. The Pladex 100ml, Infusion R/L 500ml, Tablet Panadol Extra, Syrup Pelton – V and Capsule Vibramycin in laboratory CatA21 (LRHP1) and CatB20 (AMCMDN2) for 1 to 3 days treatment and the Patients ages range from 37-56 and their recovering ratio calculated from the laboratory test by immune system and physical health comparison which were recorded as 95% with positive rate with a good health.

1995 ◽  
Vol 268 (3) ◽  
pp. L399-L406 ◽  
Author(s):  
T. Fukushima ◽  
K. Sekizawa ◽  
M. Yamaya ◽  
S. Okinaga ◽  
M. Satoh ◽  
...  

Ingested ferrimagnetic (Fe3O4) particles were used to estimate noninvasively the motion of organelles in alveolar macrophages (AM) in intact rats during viral respiratory infection by parainfluenza type 1 (Sendai) virus. Four days after instillation of Fe3O4 particles (3 mg/kg) into the lung, remnant field strength (RFS) was measured at the body surface immediately after magnetization of Fe3O4 particles by an externally applied magnetic field. RFS decreases with time, due to particle rotation (relaxation) which is related to cytoplasmic motility of AM. Viral infection increased the relaxation rate (lambda o per min), and increases in lambda o reached a maximum 3 days after nasal inoculation (day 3). Viral infection (day 3)-induced increases in lambda o were dose dependently inhibited by either the L-arginine analogue N-nitro-L-arginine or by methylene blue, an inhibitor of guanylate cyclase activity. Bronchoalveolar lavage fluid obtained from infected rats contained significantly higher levels of nitrite than that from control rats (P < 0.01). In in vitro experiments, AM from infected rats showed significantly higher lambda o, nitrite production, and intracellular guanosine 3',5'-cyclic monophosphate levels than those from control rats (P < 0.01). Sodium nitroprusside, known to release nitric oxide concentration dependently, increased lambda o of AM from noninfected rats in vitro. These results suggest that nitric oxide plays an important role in AM cytoplasmic motility during viral respiratory infection.


2019 ◽  
Author(s):  
Andrew Becker ◽  
Gary An ◽  
Chase Cockrell

AbstractViral respiratory infections, such as influenza, result in over 1 million deaths worldwide each year. To date, there are few therapeutic interventions able to affect the course of the disease once acquired, a deficit with stark consequences that were readily evident in the current COVID-19 pandemic. We present the Cellular Immune Agent Based Model (CIABM) as a flexible framework for modeling acute viral infection and cellular immune memory development. The mechanism/rule-based nature of the CIABM allows for interrogation of the complex dynamics of the human immune system during various types of viral infections. The CIABM is an extension of a prior agent-based model of the innate immune response, incorporating additional cellular types and mediators involved in the response to viral infection. The CIABM simulates the dynamics of viral respiratory infection in terms of epithelial invasion, immune cellular population changes and cytokine measurements. Validation of the CIABM involved effectively replicating in vivo measurements of circulating mediator levels from a clinical cohort of influenza patients. The general purpose nature of the CIABM allows for both the representation of various types of known viral infections and facilitates the exploration of hypothetical, novel viral pathogens.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1333
Author(s):  
Hidde P. van Steenwijk ◽  
Aalt Bast ◽  
Alie de Boer

The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.


PEDIATRICS ◽  
2016 ◽  
Vol 137 (4) ◽  
pp. e20153555-e20153555 ◽  
Author(s):  
T. Chonmaitree ◽  
R. Trujillo ◽  
K. Jennings ◽  
P. Alvarez-Fernandez ◽  
J. A. Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document