scholarly journals Non-Hermitian Electronics Multipods of Electromagnetically Induced Transparency (EIT) and Absorption (EIA)

Author(s):  
Senghor TAGOUEGNI ◽  
Fernande FOTSA-NGAFFO ◽  
Aurélien KENFACK-JIOTSA

Abstract We study a non-Hermitian electronic dimers system based on an imaginary resistor (Z) in a (N+2) level atomic multi-pod configuration. Non-Hermitian systems depend on a gain/loss parameter and are specifically marked by a degeneracy exhibited at an exceptional point (EP) separating different phases of complex modes dynamics. Interestingly, the structural characterization and the dispersive properties reveal a broad range of strong coupling where the interplay between the control and the probe field induce a simultaneous EIT, EIA and ATS. Here, by identifying the underlying physical mechanisms, we show that multiple windows of transparency can be strongly enhanced by the incorporation of several dimers in the multipod network. On the other hand, if the pumping field is resonant in the weak regime, multiple EIT and EIA windows result in the number of dimers. Remarkably, the proposed system embedded a multiple coupling mechanism whose modulation induces a couplingless point whereby the energy cross. At this point EIT and related phenomena vanish.

2019 ◽  
Vol 64 (3) ◽  
pp. 197
Author(s):  
R. Hazra ◽  
Md.M. Hossain

We have theoretically studied the atomic populations, electromagnetically induced transparency (EIT), and dispersion in a three-level Λ-type system. The density matrix equations are set up with regard for the relaxation of populations of the ground states, and the optical Bloch equations are solved analytically in the weak probe field approximation. Decoherence effects in the ground and excited states on the EIT line shape and dispersive signals are studied, and it is found that the EIT line width increases and the peak height decreases, as the decoherence rates increase in the ground and excited states. On the other hand, we have observed that the dispersive signals are steeper and of high contrast for the lower decoherence rates in the ground and excited states. We have also analyzed the variations of atomic populations of the energy levels at the pump Rabi frequency, as well as the decoherence rate in the ground state.


2015 ◽  
Vol 29 (30) ◽  
pp. 1550185 ◽  
Author(s):  
R. Karimi ◽  
S. H. Asadpour ◽  
S. Batebi ◽  
H. Rahimpour Soleimani

The influence of external magnetic field and relative phase between two electric field components of the probe field on absorption–dispersion and group index of a four-level atomic system with two degenerate sublevels are investigated. The results show that, the behaviors of weak probe light can be controlled by an external magnetic field. It is shown that in the presence of the external magnetic field the additional electromagnetically induced transparency (EIT) window can be obtained. Our result also reveal that the switching from slow to fast light or vice versa can be manipulated by changing the phase difference between the two circularly polarized components of a single coherent field.


2019 ◽  
Vol 17 (2) ◽  
pp. 131-144
Author(s):  
Vladan Pavlovic ◽  
Zeljko Laic ◽  
Ljiljana Stevanovic ◽  
Nikola Filipovic

In this paper, we investigated the realization of electromagnetically induced transparency (EIT) in a rectangular quantum dot (QD) with a single electron in the presence of probe and control laser fields. The lowest three levels of the confined electron that form ladder and V configuration were chosen. We discussed the dependence of density matrix elements for ladder configuration and for V configuration on detunings of the probe field for various values of quantum dot dimensions. This dependence is discussed for both cases, at cryogenic temperatures when spontaneous emission dominates the relaxation mechanism and at room or higher temperatures when dephasing rate cannot be neglected.


Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1520-1523 ◽  
Author(s):  
Stefan Weis ◽  
Rémi Rivière ◽  
Samuel Deléglise ◽  
Emanuel Gavartin ◽  
Olivier Arcizet ◽  
...  

Electromagnetically induced transparency is a quantum interference effect observed in atoms and molecules, in which the optical response of an atomic medium is controlled by an electromagnetic field. We demonstrated a form of induced transparency enabled by radiation-pressure coupling of an optical and a mechanical mode. A control optical beam tuned to a sideband transition of a micro-optomechanical system leads to destructive interference for the excitation of an intracavity probe field, inducing a tunable transparency window for the probe beam. Optomechanically induced transparency may be used for slowing and on-chip storage of light pulses via microfabricated optomechanical arrays.


2016 ◽  
Vol 2 (2) ◽  
pp. e1501142 ◽  
Author(s):  
Xueqian Zhang ◽  
Quan Xu ◽  
Quan Li ◽  
Yuehong Xu ◽  
Jianqiang Gu ◽  
...  

Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.


2019 ◽  
Vol 9 (21) ◽  
pp. 4512 ◽  
Author(s):  
Xin Wang

We show that by treating the weak probe field as a perturbation to the strong coupling fields in the atomic system and using the perturbative method in a master equation, the features of linear response of phenomena of electromagnetically induced transparency (EIT) can be uniformly demonstrated, regardless of the details of atomic energy level configuration. We compare our estimation with both typical and atypical EIT-observed configurations and find that our model indeed provides a description of the sharp transmission window in central area of typical EIT curve. It can also be inferred hereby that for various systems other than atomic gas, as long as the description of the system’s dynamics comes down to the simplified form of master equation, the corresponding EIT analogs and EIT-like phenomena can also be explained in this way.


2021 ◽  
Author(s):  
Khoa Dinh Xuan ◽  
Ai Nguyen Van ◽  
Dong Hoang Minh ◽  
Doai Le Van ◽  
Bang Nguyen Huy

Abstract We proposed a model for all-optical switching in a medium consisting of four-level vee-cascade atomic systems excited by coupling, probe, and signal fields. It is shown that, by changing the intensity or the frequency of the signal field, the medium can be actively switched between either electromagnetically induced transparency (EIT) or electromagnetically induced absorption (EIA), which has behavior of all-optical switching. As a result, a cw probe field is switched into square pulses by modulating the intensity or the frequency of the signal light. Furthermore, width of the square probe pulses can be controlled by tuning the switching period of the signal field. Such a tuneable all-optical switching is useful for finding related applications in optic communications and optical storage devices.


2020 ◽  
Vol 10 (16) ◽  
pp. 5719
Author(s):  
Sumei Huang ◽  
Hongmiao Hao ◽  
Aixi Chen

The nonlinearity of a mechanical oscillator may lead to the generation of the macroscopic quantum states, which are useful for precision measurement. Measuring the nonlinearity of a mechanical oscillator becomes important in order to effectively assess its performance. In this paper, we study the electromagnetically induced transparency (EIT) in an optomechanical system with a cubic nonlinear movable mirror. In the presence of the nonlinearity of the movable mirror, we show that the intensity of the output probe field exhibits an asymmetric shape with the transparency peak shifted to a frequency lower than the cavity resonance frequency. This shift can be used to measure the nonlinearity strength of the movable mirror. We also show that the mechanical nonlinearity gives rise to the enhancement of the intensity of the second-order upper sideband generation.


Sign in / Sign up

Export Citation Format

Share Document