scholarly journals Interpreting models interpreting brain dynamics

Author(s):  
Md Mahfuzur Rahman ◽  
Usman Mahmood ◽  
Noah Lewis ◽  
Harshvardhan Gazula ◽  
Alex Fedorov ◽  
...  

Abstract Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Yet, the difficulty of reliable training on high-dimensional low sample size datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this work, we introduce a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. Results successfully demonstrate that the proposed framework enables learning the dynamics of resting-state fMRI directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction.

2021 ◽  
Author(s):  
Md Mahfuzur Rahman ◽  
Usman Mahmood ◽  
Noah Lewis ◽  
Harshvardhan Gazula ◽  
Alex Fedorov ◽  
...  

Abstract Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Yet, the difficulty of reliable training on high-dimensional low sample size datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this work, we introduce a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. Results successfully demonstrate that the proposed framework enables learning the dynamics of resting-state fMRI directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction.


Author(s):  
Eli Müller ◽  
Brandon Munn ◽  
Luke J. Hearne ◽  
Jared B. Smith ◽  
Ben Fulcher ◽  
...  

AbstractRecent neuroimaging experiments have defined low-dimensional gradients of functional connectivity in the cerebral cortex that subserve a spectrum of capacities that span from sensation to cognition. Despite well-known anatomical connections to the cortex, the subcortical areas that support cortical functional organization have been relatively overlooked. One such structure is the thalamus, which maintains extensive anatomical and functional connections with the cerebral cortex across the cortical mantle. The thalamus has a heterogeneous cytoarchitecture, with at least two distinct cell classes that send differential projections to the cortex: granular-projecting ‘Core’ cells and supragranular-projecting ‘Matrix’ cells. Here we use high-resolution 7T resting-state fMRI data and the relative amount of two calcium-binding proteins, parvalbumin and calbindin, to infer the relative distribution of these two cell-types (Core and Matrix, respectively) in the thalamus. First, we demonstrate that thalamocortical connectivity recapitulates large-scale, low-dimensional connectivity gradients within the cerebral cortex. Next, we show that diffusely-projecting Matrix regions preferentially correlate with cortical regions with longer intrinsic fMRI timescales. We then show that the Core–Matrix architecture of the thalamus is important for understanding network topology in a manner that supports dynamic integration of signals distributed across the brain. Finally, we replicate our main results in a distinct 3T resting-state fMRI dataset. Linking molecular and functional neuroimaging data, our findings highlight the importance of the thalamic organization for understanding low-dimensional gradients of cortical connectivity.


2021 ◽  
Author(s):  
Victor Nozais ◽  
Philippe Boutinaud ◽  
Violaine Verrecchia ◽  
Marie-Fateye Gueye ◽  
Pierre-Yves Hervé ◽  
...  

2019 ◽  
Vol 215 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Gin S. Malhi ◽  
Pritha Das ◽  
Tim Outhred ◽  
Richard A. Bryant ◽  
Vince Calhoun

BackgroundSubsyndromal emotional symptoms in adolescence may represent precursors for full-blown emotional disorders in early adulthood. Understanding the neurobiological mechanisms that drive this development is essential for prevention.AimsSelf-referential processing and emotion regulation are remodelled substantively during adolescence, therefore this study examined integration of key neural networks involved in these processes.MethodAt baseline, clinical and resting-state functional magnetic resonance imaging data were collected for 88 adolescent girls (mean age 15 years), and 71 of these girls underwent repeat clinical assessment after 2 years. These 71 girls were then partitioned into two groups depending on the presence (ES+) or absence (ES−) of emotional symptoms, and differences in dynamic functional network connectivity were determined and correlated with clinical variables.ResultsThe two groups displayed a differential pattern of functional connectivity involving the left lateral prefrontal network (LPFN). Specifically, in the ES+ group this network displayed positive coupling with the right LPFN but negative coupling with the default mode network, and the inverse of this pattern was found in the ES− group. Furthermore, the coupling strengths between left and right LPFN at the irst time point predicted follow-up depression and state anxiety scores.ConclusionsOur findings suggest that in adolescent girls, emotional symptoms may emerge as a result of impaired integration between networks involved in self-referential information processing and approach-avoidance behaviours. These impairments can compromise the pursuit of important goals and have an impact on emotion processing and finally may lead to the development of emotional disorders, such as anxiety and depression in adulthood.Declaration of interestNone.


2019 ◽  
Vol 18 (1) ◽  
pp. 71-86 ◽  
Author(s):  
Nguyen Thanh Duc ◽  
Seungjun Ryu ◽  
Muhammad Naveed Iqbal Qureshi ◽  
Min Choi ◽  
Kun Ho Lee ◽  
...  

NeuroImage ◽  
2016 ◽  
Vol 129 ◽  
pp. 292-307 ◽  
Author(s):  
Heung-Il Suk ◽  
Chong-Yaw Wee ◽  
Seong-Whan Lee ◽  
Dinggang Shen

Author(s):  
Qianfan Wu ◽  
Adel Boueiz ◽  
Alican Bozkurt ◽  
Arya Masoomi ◽  
Allan Wang ◽  
...  

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.


Sign in / Sign up

Export Citation Format

Share Document