scholarly journals Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation

2020 ◽  
Author(s):  
Jia-Hui He ◽  
Rong-Pei Liu ◽  
Yi-Man Peng ◽  
Qing Guo ◽  
Lan-Bing Zhu ◽  
...  

Abstract Background: Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants. Methods: Primary astrocytes were isolated and cultured using neurobasal-based serum free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses and the underlying mechanisms were analyzed. Results: All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1β (IL-1β). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1β but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity. Conclusions: The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jia-Hui He ◽  
Rong-Pei Liu ◽  
Yi-Man Peng ◽  
Qing Guo ◽  
Lan-Bing Zhu ◽  
...  

Abstract Background Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants. Methods Primary astrocytes were isolated and cultured using neurobasal-based serum-free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α, and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses, and the underlying mechanisms were analyzed. Results All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1β (IL-1β). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1β but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity. Conclusions The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangren Xu ◽  
Hongyu Lei ◽  
Qiaoling Yuan ◽  
Huiyu Chen ◽  
Jianming Su

AbstractChikusetsusaponin IVa (CHS-IVa), a saponin from herb Panacis japonicas, possesses extensive biological activities. However, the roles and underlying mechanisms of CHS-IVa on inflammation have not been fully clarified in the setting of murine macrophages. In this study, we found that CHS-IVa effectively reduced the expression of inflammatory mediators, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), interleukin-1β (IL-1β), cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells. Meanwhile, CHS-IVa could also evidently bate the contents of nitric oxide (NO) and prostaglandin E2 (PGE2) in cell culture supernatants. Furthermore, the anti-inflammatory activity of CHS-IVa may be via diminishing the phosphorylation of extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK). Collectively, these findings will help to understand of the anti-inflammatory effects and mechanisms of P. japonicas deeply, and suggest a validated therapeutic use as an anti-inflammatory medication.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2011 ◽  
Vol 152 (26) ◽  
pp. 1035-1042 ◽  
Author(s):  
Viktor Hegedüs ◽  
Domokos Gerő ◽  
Zoltán Mihály ◽  
Attila Szijártó ◽  
Tivadar Zelles ◽  
...  

Changes of redox-homeostasis generate cytokines, and free radicals influence many intracellular signaling pathways in different liver diseases. Liophylised table beet and carrot powder (GPS Powder Kft. 1361/004/2003BFÁÉÉÁ) containing bioactive components such as betaine, betanins, betaxanthins, flavonoids, polyphenols, glutamine, beta carotene, vitamins and folic acid may produce changes various cellular pathways. Aim: The aim of this study was to determine the protecting effects of bioactive agents of the liophylised table beet and carrot powder on fatty liver in a “short term” experiment. Method: Male Wistar rats were fed with chow with or without high fat (2% cholesterol, 0.5% cholic acid, 20% sunflower oil) and treated with 0.1 or 1 g/bwkg/day natural product for ten days parallel with the feedings. Cyclooxygenase-2, inducible nitric oxide synthase and tumor necrosis factor-α mRNA levels were determined using molecular biologic methods. Free radicals, H-donating activity, reducing power and free SH-group concentrations were determined by luminometry and spectrophotometry. Mobilized methyl groups were assayed by over pressure liquid chromatography method in liver homogenates. Results: It was found that the higher dose of the natural product better decreased the induced free radical reactions, cyclooxygenase-2, inducible nitric oxide synthase and tumor necrosis factor-α mRNA-levels both in normal and fatty liver tissues. Although treatments failed to exert significant changes in all global antioxidant parameters, mobilized methyl group concentrations were higher after treatments in fatty liver. Favorable tendencies were also noted in the redox-homeostasis of the fatty liver after treatment. Conclusions: As expected, lyophylised table beet and carrot proved to be a “functional food” in rats with alimentary fat induced fatty liver. It cannot be ruled out that this beneficial effect may have clinical relevance. Orv. Hetil., 2011, 152, 1035–1042.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 582 ◽  
Author(s):  
Yuan ◽  
Zhang ◽  
Shen ◽  
Jia ◽  
Xie

Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document